
Advanced Design System 2002

Design Kit Development

February 2002

Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available
upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1)
and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.

Copyright © 2002, Agilent Technologies. All Rights Reserved.

Acknowledgments

Cadence®, Spectre®, and Analog Artist® are registered trademarks of Cadence
Design Systems Incorporated.
Design Framework II™ and Composer™ are trademarks of Cadence Design Systems
Incorporated.
Copyright © 2001 Cadence Design Systems Incorporated. All rights reserved.

Mentor Graphics®, Boardstation® and Design Architect® are registered trademarks
of Mentor Graphics Incorporated.

Copyright © 1997 Mentor Graphics Incorporated. All rights reserved.

XnView Copyright © Pierre-e GOUGELET 1997/2001. All rights reserved.
ii

Contents
1 Introduction

ADS Design Kits ... 1-2
ADS Design Flows.. 1-2
Design Kits versus Libraries ... 1-3
Intended Audience.. 1-4
What is in this Manual .. 1-5
Addressing a Needed Capability .. 1-6

2 Understanding the ADS Design Kit File Structure
Overview of the File Structure .. 2-1
Understanding the Directory Contents ... 2-8

3 ADS Design Kit Tutorial
Tutorial Overview .. 3-2
Building the Basic Design Kit Parts .. 3-3

Creating the ads.lib File.. 3-4
Creating the boot.ael File ... 3-5
Viewing Debug Output.. 3-7
Creating Component Symbols ... 3-7
Creating Component Definitions .. 3-9
Testing Your Component .. 3-12
Providing Basic Documentation.. 3-13
Making Components Accessible .. 3-14
Creating a Component Palette and Bitmaps .. 3-14
Adding a Netlist Include Component .. 3-18
Creating an Example Design Using your Design Kit .. 3-23
Adding Components to the Library Browser... 3-26
Adding Demand Loaded Components ... 3-29
Using a Subcircuit Model.. 3-31
Adding a Resistor with SDD Subcircuit Model.. 3-36

Accessing the Supplied Sample Kit.. 3-46

4 Basic Parts of an ADS Design Kit
Design Kit Name... 4-1
Components in a Design Kit ... 4-2

Component Name .. 4-2
Item Definition .. 4-4
Schematic Symbol.. 4-12
Component Palette vs. Library Browser ... 4-15
Component Palette... 4-16
Bitmaps .. 4-17
iii

Library Browser .. 4-18
Demand Loaded Components ... 4-21

Model Files ... 4-21
Netlist Include or Process Component ... 4-22
Example Process Component with Forms and Formsets 4-25
The #include Pre-processor Command.. 4-29
The #ifdef and #define Pre-processor Commands... 4-30
Model Naming Limitations .. 4-32

The ads.lib Template .. 4-33
AEL Code for Loading a Design Kit .. 4-35
The about.txt File.. 4-36
The Example Project .. 4-37

5 Completing the Design Kit
Verifying a Design Kit ... 5-1
Assigning a Version .. 5-1
Packaging for Distribution ... 5-2
Supporting a Design Kit.. 5-3

6 Additional Parts for ADS Design Kits
Adding Simulation Data to a Design Kit.. 6-1

S-Parameter and MDIF data .. 6-1
Root Model Files .. 6-2

User Compiled Models ... 6-2
Parameter Callbacks .. 6-3

Adding a Callback to a Parameter Definition .. 6-3
Writing the Parameter Callback Function ... 6-5
Optimization Considerations... 6-12
Developing and Testing Modified Parameter Callback Functions....................... 6-12
Limitations of Parameter Callbacks .. 6-13

Netlist Callbacks ... 6-14
Layout vs. Schematic Comparison ... 6-16
Creating Design Kit Documentation ... 6-16
Layers and Preferences Files ... 6-17
Advanced Topics .. 6-18

Expressions.. 6-18
Templates ... 6-19
Adding Custom AEL ... 6-19
Adding Custom Menus to ADS... 6-20
Adding Custom Models to the ADS Simulator.. 6-23
ADS Layout Files.. 6-23
iv

7 Standardizing Existing ADS Design Kits
Design Kit Parts.. 7-1
Naming Convention .. 7-1
Component Selection Method .. 7-2
Palette Bitmaps... 7-2
Custom AEL Code.. 7-2
Design Kit Distribution .. 7-3
Kits that do not conform to the Standard .. 7-3

8 Setting Up Design Kit Software and Menus
Configuration Files.. 8-1
Current Configuration Variables ... 8-2
Accessing Old Design Kit Software .. 8-5
Accessing Both Old and New Design Kit Menus Simultaneously............................. 8-6
Viewing Configuration Files and Variables ... 8-8
Disabling the Design Kit Software .. 8-8

A ADS Design Kit Development for RFIC Dynamic Link
RFIC Dynamic Link... A-1
Design Kits for RFIC Dynamic Link .. A-1

B ADS Design Kit Development for IFF
Intermediate File Format .. B-1

Index
v

vi

Chapter 1: Introduction
Advanced Design System (ADS) from Agilent Technologies is a tool used by engineers
for a variety of design applications, such as RFIC, System, MMIC, Hybrid or Board
level design. In order to effectively use the design environment and to take advantage
of its powerful simulation capabilities, designers must have a library of components
that are linked to model files or simulation data.

For RFIC designers, the components and models are typically distributed by a
foundry in the form of a design kit. A unique design kit is created for each process and
each CAD tool. This kit is given to the foundry customer to use when designing their
circuit.

To help RFIC designers become more successful with our electronic design
automation (EDA) software, Agilent Technologies has been working with popular
foundries to provide ADS components and translated model files for distribution by
the foundry to the IC designer. Many customers are also creating design kits
themselves.

Design kits in ADS are not only beneficial to RFIC designers. This library structure
can be used for any technology or process to package and distribute a reusable set of
components. With the information provided in this document, design kits for use in
ADS can now be created by anyone.

The intent of this manual is to educate and assist users who are developing a design
kit for the first time by providing a standard methodology. In addition to providing
assistance to first time design kit developers, this manual is also intended to aid in
troubleshooting problems with legacy design kits and updating these kits to the new
standard.

A design kit combines functionality and features of many parts of ADS. Therefore,
this document contains many cross-references to other ADS documents. Familiarity
with Advanced Design System, as well as prior experience with ADS’s Application
Extension Language (AEL), will improve your understanding of this document and
the process of creating a design kit. At a higher level, understanding this document
and the concepts presented in it will guide you in the development of an integrated
design flow using ADS.

The final intent of this manual is to encourage standardization of ADS design kits.
This includes formalizing the structure, as well as the file formats and naming
conventions, for design kits used in, but not limited to, the ADS Front End Design
Flow and RFIC Dynamic Link Flow. It is absolutely imperative that your design kit
1-1

Introduction
follows this structure to avoid conflicts with other kits. For more information, refer to
“ADS Design Flows” on page 1-2.

ADS Design Kits
An ADS Design Kit is a logical grouping of files related to a set of ADS components.
The design kit structure is self-contained to provide easy transfer between different
users or computer platforms. All component information needed by Advanced Design
System is stored within the design kit.

At a minimum, a design kit must include a component definition file, schematic
symbol files (unless built-in generic symbols are used), bitmap files for the component
palette or a records file for the library browser, and information for the circuit
simulator in the form of a model file, data file, or a schematic or netlisted subcircuit.
Additionally, other optional files can be provided to extend the functionality of the
design kit.

A design kit has a directory structure that is recognized by ADS and is similar to the
directory structure for the ADS installation. All files are stored in specific directories
depending on the type of file. Your ADS design kit must follow this structure, as
defined in Chapter 2, Understanding the ADS Design Kit File Structure. Any
deviation from this pre-defined structure can lead to serious complications with your
design kit, including an inability to simulate your designs in ADS. Custom extensions
within design kits can also interfere with built-in tools in ADS and cause them to fail.

The simplest way to build a design kit is to follow the tutorial steps in Chapter 3,
ADS Design Kit Tutorial of this document to create a sample design kit. You can then
use the information in Chapter 4, Basic Parts of an ADS Design Kit and Chapter 6,
Additional Parts for ADS Design Kits to tailor your kit for your specific application. A
copy of all files developed in the tutorial is provided with ADS for your convenience.

ADS Design Flows
Advanced Design System is a flexible tool that can be used on its own or in
conjunction with other CAE tools in a variety of design flows. An engineer using the
ADS Front End Design Flow enters a design in the ADS schematic editor and uses
the ADS simulator for analysis. The design is then re-entered in a separate layout
tool. To validate the integrity of the layout, the ADS Netlist Exporter is used to create
a netlist for layout vs. schematic comparison. For more information on Front End
Design Flow, refer to the ADS “Netlist Exporter” documentation.
1-2 ADS Design Kits

An engineer using the RFIC Dynamic Link Flow enters a design in Cadence Virtuoso
Schematic Capture. The design is then dynamically linked via inter-process
communication (IPC) for simulation in ADS. For more information on the RFIC
Dynamic Link Flow, refer to Appendix A, ADS Design Kit Development for RFIC
Dynamic Link.

Design Kits versus Libraries
Before you start to build your design kit, you should make sure that a design kit is
really what you need. A design kit is a complex form of a library. Advanced Design
System offers other ways to create libraries of reusable parts. The simplest method is
to use the Tools > Custom Library menu pick in the schematic window.

A designguide can also be viewed as a library, although the purpose is slightly
different. A designguide is a complete study of an application topic (e.g. amplifiers,
mixers, oscillators, etc.), in the form of typical simulation schematics, data displays,
and detailed reference designs for study.

The following are some criteria that you can use to decide what type of library you
should create.

1. Will the technology/process be used by design engineers internally or
externally?

• A design kit is better suited for external distribution.

• For internal use, a library or designguide might be sufficient.

2. What are the simulation methods? (netlist, subcircuit, user-defined, data)

• If user-defined models, data files or model cards or subcircuit models in a
netlist files are being used, a design kit is recommended.

• If a library consists strictly of schematic subcircuits, a library or designguide
might be sufficient.

3. Will your library include custom Application Extension Language (AEL) code?
AEL code is used in ADS to add parameter callbacks, layout menus and custom
menus.

• Once you decide to write custom code, it is no longer a simple library. A
design kit is better suited to handle custom AEL code.

4. Will there be simulation templates?
Design Kits versus Libraries 1-3

Introduction
• Both Design Kits and DesignGuides can include simulation templates.
However, the emphasis on a design kit is typically related more to the
models. If providing simulation templates is your main objective, ADS
DesignGuides are recommended as a better method.

5. What is the size of your company or the staffing model of the design
department?

• For a large company with many CAD tools and many processes to support,
and a full time CAD manager supporting many designers, design kits are
recommended. These can be installed in a controlled system location that is
accessible by all.

• For medium or small companies with no full time CAD manager, who just
need to share subcircuits among designers, a simple library or designguide
should be sufficient.

For more information on ADS DesignGuides, refer to the “DesignGuides” tab in your
online ADS manual set.

For more information on custom libraries, refer to “Creating Custom Libraries” in
Chapter 2 of the ADS “Customization and Configuration” manual.

Intended Audience
The audience intended for this manual consists of a variety of people involved in
design kit creation, verification, distribution and use. This audience includes design
kit developers and CAD administrators as well as advanced design kit users who
need to understand what the difference is between design kits before and after ADS
2001.
1-4 Intended Audience

What is in this Manual
This manual contains all the information needed to create a design kit for use in an
ADS Front End Design Flow. Most of the details are applicable for all work involving
design kit creation but some optional steps may be skipped for simpler kits or smaller
installations. Following the standard structure will ensure that your design kit will
not conflict with other design kits in use by your customers.

Included in this document are details of the directory structure, how to create the
specific files needed by the system, which files are required and which are optional,
and different ways to include your model information.

• Chapter 2, Understanding the ADS Design Kit File Structure, gives an
overview of the directory structure of a standard ADS design kit, followed by a
summary of the types of files in each directory.

• Chapter 3, ADS Design Kit Tutorial, describes in detail how to create the files
in basic design kit.

• Chapter 4, Basic Parts of an ADS Design Kit, describes the fundamental parts
of an ADS design kit.

• Chapter 5, Completing the Design Kit, discusses what to do after your design
kit has been created.

• Chapter 6, Additional Parts for ADS Design Kits, describes the details of the
parts of a design kit that were not covered in Chapter 4, Basic Parts of an ADS
Design Kit.

• Chapter 7, Standardizing Existing ADS Design Kits, describes the process of
standardizing design kits provided prior to ADS 2001.

• Chapter 8, Setting Up Design Kit Software and Menus, describes the details of
configuration files and variables which are used to enable and disable the
common design kit software.

• Appendix A, ADS Design Kit Development for RFIC Dynamic Link, includes a
brief discussion of the differences between ADS Front End Design Flow kits and
design kits using the RFIC Dynamic Link Flow for Cadence.

• Appendix B, ADS Design Kit Development for IFF, briefly discusses design kit
development for use with intermediate file format (IFF) files.
What is in this Manual 1-5

Introduction
Addressing a Needed Capability
If you are creating a design kit that needs some capability that is not included in this
document or is not supported by Advanced Design System, the ADS Design Kit team
at the factory would like to understand the situation. There might be a solution that
has not yet been documented or we may choose to add it based on a demonstrated
need and mutual, widespread benefit.

For more information, contact your Agilent Technologies sales representative with a
request to submit a suggestion to the ADS Design Kit team at the factory.
1-6 Addressing a Needed Capability

Chapter 2: Understanding the ADS Design
Kit File Structure
This chapter describes the details of the ADS design kit file structure. The best way
to learn how to build your own design kit is to follow the tutorial steps described in
Chapter 3, ADS Design Kit Tutorial. The tutorial describes how to create all the basic
files and how to test the design kit as it evolves. A copy of the sample kit is provided
with the ADS design kit infrastructure software. You can then use the information in
Chapter 4, Basic Parts of an ADS Design Kit and Chapter 6, Additional Parts for
ADS Design Kits to build on your understanding and customize the kit for your
needs.

Overview of the File Structure
As mentioned in Chapter 1, Introduction, an ADS design kit is a group of files that is
related to a set of ADS components, and which is self-contained for ease of transfer.
The files in a design kit reside in specific subdirectories, collected under a directory
that bears the name of the design kit itself. For distribution, the files are easily
packaged into an archive file, in the .zip file format.

Some of the directories are required for all design kits, no matter what technology
they will serve. There are also a few directories which are required depending on the
technology or configuration of the design kit. Additionally, there are other directories
which are completely optional and are used to provide extra functionality within the
design kit.

This chapter includes an overview of all directories and the files in them, including
information to help you decide which are required for your design kit. Chapter 4,
Basic Parts of an ADS Design Kit gives detailed information about the required
directories and files and Chapter 6, Additional Parts for ADS Design Kits gives
detailed information about many of the optional directories and files. Figure 2-1 and
Figure 2-2 in this chapter illustrate the structure of two simple design kits.
Figure 2-3 is a comprehensive structure of all possible design kits directories defined
at this time and Table 2-1 lists the types of files found in each directory.

ADS is a powerful system with capabilities for extensive customization. Design kits
need to co-exist with each other and with all of the tools in the system, so they must
conform to ADS standards. Agilent Technologies needs to be kept aware of the
extensions that are being made for individual design kits, those that are developed by
Overview of the File Structure 2-1

Understanding the ADS Design Kit File Structure
Agilent Technologies, as well as those that are not, so that as technology advances are
made, this documentation and the infrastructure software can be extended to cover
new areas.

The directories and files that are required for all design kits are:

Additionally, directories described below may be required to complete a minimal kit.

In ADS, components can be selected from a palette on the schematic page or from the
library browser. The palette includes bitmaps so a component can be selected quickly.
The library browser presents more information to the user and includes the ability to
search for a component based on its characteristics. A component in a design kit can
be presented in the palette or in the library browser or both. Additionally, a design kit
may consist of some components that are only in the palette and some that are only
in the library browser.

If design kit components will be available from a component palette, the following
directories and files are required:

If design kit components will be available from the library browser, the following
directory and files are required:

If a library browser file is included in a design kit, the .ael and .atf files in the
circuit/ael directory will not need to be shipped with the design kit. However, they
still need to be created so they can be compiled into the browser file. This issue will be
discussed further in “Packaging for Distribution” on page 5-2.

A design kit contains information needed by the simulator to perform calculations.
This information may be supplied as model cards or subcircuit models in a netlist

circuit/ael Component definition

circuit/symbols Schematic symbols

design_kit Template ads.lib file

doc ’about.txt’ information file

examples Schematic design file

circuit/bitmaps Bitmap files

de/ael Boot files to enable palette

circuit/records Library browser files
2-2 Overview of the File Structure

fragment. RFIC foundry kits often include SPICE model files translated from another
simulator. Completion of a design kit containing these translated model files will
include a verification process that involves creating circuits in both simulators and
comparing the data. The ADS Design Kit Model Verification Toolkit can assist you in
this task. For more information on the topic of included models, refer to “Model Files”
on page 4-21.

Additional topics related to inclusion of simulation data are discussed in “Adding
Simulation Data to a Design Kit” on page 6-1. For example, if the model used by the
design kit is a user-compiled model, you will need to supply the custom simulator
executable in the bin directory of the design kit. Additionally, schematic subcircuits
may be the form that models are delivered in. A final method of including simulation
data is to include the raw simulation data in the form of an mdif, s2p or citi file. For
more information on the mdif, s2p or citi file types, refer to “Working with Data Files”
in the ADS “Circuit Simulation” documentation.

To supply simulation data, you will use one of the following directories:

Note $ARCH can be determined by running $HPEESOF_DIR/bin/hpeesofarch.
For ADS2002, the ARCH values win32, hpux10, aix4, and sun57 are returned from
this program. They may change in the future.

circuit/models netlist fragments If simulation data is in the form of
model cards or subcircuit models.

circuit/data mdif, etc. If simulation data is in raw data form.

bin/$ARCH .dll (win32)
.sl (hpux10/aix4)
.so (sun57)

If a user-compiled model is included
as a dynamically linked library (.dll)
or shared library (.sl or .so).

circuit/designs .dsn files If a subcircuit model is in schematic
form.
Overview of the File Structure 2-3

Understanding the ADS Design Kit File Structure
Figure 2-1 shows the directory structure of a design kit that provides a component
palette and model data in the form of model cards or subcircuit models in a netlist
file. This is a typical simple RFIC design kit. Additionally, it could include a
circuit/records directory to enable the library browser.

The name design_kit_name as the top level directory name is a generic name
supplied for this illustration. This name should be replaced by the actual name of
your design kit.

Figure 2-1. ADS Design Kit File Structure for Component Palette and Simulation
Data in Model Files
2-4 Overview of the File Structure

Figure 2-2 shows the directory structure of a design kit that provides access to
components via the library browser and includes simulation data in the form of a
data file.

Figure 2-2. ADS Design Kit File Structure for Library Browser Access and
Simulation Data in Data Files
Overview of the File Structure 2-5

Understanding the ADS Design Kit File Structure
Figure 2-3 shows the comprehensive structure of all possible design kit directories
defined at the time this document was written. If your design kit needs directories
that are not listed in the complete structure shown here, it is recommended that you
work with the ADS Design Kit Infrastructure team at Agilent EEsof-EDA.

Figure 2-3. Comprehensive Listing of Potential Directories in an ADS Design Kit
2-6 Overview of the File Structure

Table 2-1 lists all of the possible subdirectories, as shown in Figure 2-3, as well as the
types of files that will reside in those directories. Note that the last column in
Table 2-1 denotes whether the files are autoloaded or not.

Table 2-1. Design Kit File Structure

Directories Subdirectories Files Description AL

bin/ $ARCH/ *.dll (win32), *.sl (hpux10 or
aix4), *.so (sun57) †

User-compiled model in
dynamically linked library or
shared library.

Y

circuit/ ael/ <prefix>_<item>.ael create_item() Y*

artwork/ *.ael macro files for ADS layout N

bitmaps/pc/ <prefix>_<item>.bmp PC bitmap N

bitmaps/unix/ <prefix>_<item>.bmp UNIX bitmap (bmptoxpm) N

config/ † ADSlibconfig #uselib lookup table N

data/ *.ds simulations/measurements Y

*.mdf MDIF files generated by ICCAP Y

*.s2p Touchstone S-parameter files Y

*.cti CITIFILE files Y

designs/ *.dsn subcircuits Y

models/ *.net spice/spectre translator netlists N

records/ <prefix>_<lib>.ctl control file Y

<prefix>_<lib>.rec record file Y

<prefix>_<lib>.idf item definition file (hpedlibgen) Y

substrates/ † *.slm Momentum substrate file N

symbols/ <prefix>_<item>.dsn symbols Y

templates/ † *.ddt, *.rec, *.ctl dds templates Y

*.tpl schematic templates Y

config/ de_sim.cfg † template config files N

de/ ael/ boot.ael generic Y*

palette.ael generic N

defaults/ † *.lay layer files N

*.prf preference files N

design_kit/ ads.lib template Y
Overview of the File Structure 2-7

Understanding the ADS Design Kit File Structure
Understanding the Directory Contents
This section briefly describes the files in each subdirectory of the complete ADS
design kit structure. For a full description of each section, refer to the expanded
discussion in Chapter 4, Basic Parts of an ADS Design Kit or Chapter 6, Additional
Parts for ADS Design Kits.

The naming convention for some of the items in these tables is <prefix>_<item>.ael or
<prefix>_<lib>.ael. The <prefix> name is a unique identifier that should include the
foundry name and the process name. The <item> name refers to a component name
and the <lib> name refers to a library name. For more information on naming
conventions, refer to “Component Name” on page 4-2. Note that all names within

doc/ readme.txt install info N

about.txt menu info N

index † lookup file N

<prefix>_<lib>.html † component info N

drc/ rules/ † DRC rules N

examples/ *.zap archived ADS project N

expressions/ ael/ † expressions_init.ael expression load file N

*.ael expressions N

hptolemy/ † hptolemy dir N

lvs/ † ael/ layout vs. schematic N

components/ N

config/ N

scripts/ † *.pl scripts N

*.ksh, *.bat N

utilities/ † *.ael any auxiliary code N

verification/ † verification info N

AL = Files Autoloaded (Y/N)? Note that <prefix>_<item>.ael is loaded only if specified in boot.ael or if
compiled into <prefix>_<lib>.idf. Also, boot.ael is loaded only when specified in ads.lib.

† Optional part. For more information, refer to Chapter 6, Additional Parts for ADS Design
Kits.

Table 2-1. Design Kit File Structure
2-8 Understanding the Directory Contents

angled brackets (< >) are place holders and will be replaced by a real name in your
design kit.

The '<design_kit_name>' Directory

The <design_kit_name> directory is the ADS Design Kit directory name. For more
information on naming directories, refer to “Design Kit Name” on page 4-1.

The 'bin/$ARCH' Directory

The bin/$ARCH directory contains platform dependent subdirectories, where $ARCH
= hpux10, aix4, sun57, or win32 for ADS2002. The directories contain dynamically
linked libraries or shared libraries (*.dll/*.sl/*.so). The value of $ARCH can be
determined by running the command:

$HPEESOF_DIR/bin/hpeesofarch

For more information, refer to “User Compiled Models” on page 6-2.

The 'circuit' Directory

For each design kit, there are quite a few possible circuit subdirectories that contain
the files specific to a particular process. Details on the files in these subdirectories,
are provided in Table 2-2.

Table 2-2. The circuit Subdirectories

Subdirectory Description

ael Component definition files

The files in these directories are AEL files containing ’create_item()’ statements, which
are the item definitions for each component. Each component may be in a separate
file or they may be combined into one file. The file may also contain global variable
declarations, form definitions, or callback functions needed for each component.
These files are loaded automatically only if there is no boot file specified in ads.lib and
no .idf file in the circuit/records directory.

Files: <prefix>_<item>.ael

artwork Macro files for Component Artwork

This directory is provided for AEL artwork macro files for ADS layout.

Files: *.ael
Understanding the Directory Contents 2-9

Understanding the ADS Design Kit File Structure
bitmaps Component bitmap files

Each component has two versions of the same bitmap stored in two separate
subdirectories. The file for the PC platform is in BMP format, and the file for the unix
platform is in the XPM format. The file names should be the same between the two
directories and should be stored in subdirectories named pc and unix. All files can
have the .bmp extension, which cannot be given when the file is referenced in ael calls
to de_define_palette_group().

Files: <prefix>_<item>.bmp

config † Component configuration files

The ADSlibconfig file uses the #uselib lookup table.

data Component data files

These files are an optional way to define simulation data. The typical way is to provide
model files. This directory is provided to store ADS simulator dataset files (*.ds), MDIF
files (*.mdf), CITIFILES (*.cti) and Touchstone files (*.s2p).

Files: *.ds, *.mdf, *.cti, or *.s2p

designs Component design files

The designs directory contains the design files (*.dsn) for hierarchical subcircuits that
can be pushed into from the schematic view.

Files: *.dsn

models Component model files

This is the typical way to provide model data to the simulator. It is a file or set of files
containing process variables and model cards or subcircuit model descriptions in the
ADS netlist format. Typically these files are translated from Spectre or HSpice files
with the ADS Netlist Translator. For more information on netlist translation, refer to the
ADS Netlist Translator documentation.

Files: *.net

Table 2-2. The circuit Subdirectories

Subdirectory Description
2-10 Understanding the Directory Contents

records Component records files

There are three types of files in the records directory. The .ctl file lists the names of the
libraries in an XML file format. It also includes the name of a .rec file to read for each
library. The .rec file is also in XML format and it lists specific information about each
component in the library. These two files are used to build the library and component
lists in the Library Browser. Only one .ctl file should be included and it can refer to
multiple .rec files.

The third type of file in the directory is used for demand loading of components. It is a
platform-independent hash file created from all the .ael item definition files for each
component. Only one .idf file should be included in this directory.

The records directory is added to the DESIGN_KIT_BROWSER_PATH search path
when a design kit is loaded. This variable is referenced by
HPANALOGRF_BROWSER_PATH in hpeesofbrowser.cfg.

Files: <prefix>_<lib>.ctl; <prefix>_<lib>.rec; <prefix>_<lib>.idf

substrates † Component substrate files

Each component has a location for Momentum substrate files. For more information
on Momentum substrate files, refer to the “Momentum” documentation. The design
software does not currently contain any functionality tied to these directories, however,
specific design kits may include custom software that uses them.

Files: *.slm

symbols Component symbol files

The symbol files are design files containing the information needed by the system to
draw the schematic symbol on the schematic page. The configuration variable
SYSTEM_CUSTOM_CIRCUIT_SYMBOLS is modified on the fly when a design kit is
loaded. The path is extended to include the path to these symbol files.

Files: <prefix>_<item>.dsn

Table 2-2. The circuit Subdirectories

Subdirectory Description
Understanding the Directory Contents 2-11

Understanding the ADS Design Kit File Structure
The 'config' Directory

The <design_kit_name>/config is no longer required. It was used in the past to store a
template version of the de_sim.cfg file that needed to be placed in the
$HOME/hpeesof/config directory at the local level or $HPEESOF_DIR/custom/config
directory at the system level. The variables defined in this file were necessary to load
the old design kit software. This is no longer necessary as of ADS 2001. For more
information on the de_sim.cfg file, refer to “Configuration Files” on page 8-1.

This directory may be used if a kit requires custom configuration variables but
extensive use of these variables is discouraged. A script would have to be provided to
extend configuration variables dynamically or move the file to a location where it will
be recognized by ADS, and the script has to be smart enough to merge the file with
existing files and specific variables with existing variables of the same name to avoid
disabling other software. Details of this level of customization are not currently
provided in this documentation. For more information on custom configurations, refer
to the ADS “Customization and Configuration” documentation.

The 'de' Directory

For each design kit, there are two possible de subdirectories that contain the files
specific to a particular process. Details on the files in these subdirectories, are
provided in Table 2-3.

templates † Component template files

This directory can include templates for simulation or for data display. The path
variable DESIGN_KIT_TEMPLATE_BROWSER_PATH is extended to include this
directory when a design kit is loaded. This path variable is referenced by
HP_TEMPLATE_BROWSER_PATH in hpeesofbrowser.cfg.

Files: <prefix>_<item>.ds or <prefix>_<item>.mdf

† Optional part. For more information, refer to Chapter 6, Additional Parts for ADS Design
Kits.

Table 2-2. The circuit Subdirectories

Subdirectory Description
2-12 Understanding the Directory Contents

The 'design_kit' Directory

The <design_kit_name>/design_kit directory contains a template version of the
ads.lib file that needs to be installed to enable this design kit. For specific details on
the ads.lib file, refer to “The ads.lib Template” on page 4-33.

Table 2-3. The de Subdirectories

Subdirectory Description

ael AEL files

The <design_kit_name>/de/ael directory is to be used for AEL files that apply to
the design kit in general, as opposed to the component specific files in circuit/ael.
Some examples of files in this directory are boot.ael and palette.ael. These files
contain commands used by the system to load the design kit and configure the
component palette. More information about these files is included in Chapter 4,
Basic Parts of an ADS Design Kit. Sample versions of these files are included
in the Chapter 3, ADS Design Kit Tutorial.

Other AEL files may be put in this directory if the design kit requires custom AEL code.
The utilities directory is also available for auxiliary AEL functions. ADS must be
instructed to load these AEL files from boot.ael, as shown in “Creating the
boot.ael File” on page 3-5, and boot.ael must be specified in the template
ads.lib file.

Files: <prefix>_<item>.ael

defaults Layer and Preferences files

The <design_kit_name>/de/defaults directory can contain layer and preference
files (.lay and .prf) which need to be used with the design kit. If the de/defaults
subdirectory is included in a design kit, the design kit needs to include custom AEL for
handling these files. Details on the possible methods for handling this are included in
“Layers and Preferences Files” on page 6-17.
For more information on layer (.lay) and preference (.prf) files, refer to “Preference
Functions” in the “AEL” documentation.

Files: *.lay, *.prf
Understanding the Directory Contents 2-13

Understanding the ADS Design Kit File Structure
The 'doc' Directory

The <design_kit_name>/doc directory contains all of the user documentation
associated with the design kit. The only required file in the doc directory at this time
is the about.txt file. HTML files may also be included and merged into the ADS
documentation set. For more information on the about.txt file, refer to “The about.txt
File” on page 4-36. For more information on adding HTML documentation to the
system, refer to “Creating Design Kit Documentation” on page 6-16.

The 'drc' Directory

The <design_kit_name>/drc/rules directory contains ael files which define drc rules
for the Design Rule Checker (DRC) tool in ADS. There is no automatic process at this
time for the ADS system to recognize the drc files in the design kit directory so
custom AEL must be provided to copy the file to an ADS project directory. A custom
menu pick can be provided to facilitate this. For more information on DRC in ADS,
refer to the “Design Rule Checker” documentation.

The 'examples' Directory

Each design kit must include at least one sample design. This can be used by your
customer or by Agilent Technologies support engineers to ensure that the design kit
is installed correctly before they start a new design. You can use this as a method to
demonstrate special features of the design kit such as a mandatory process
component that must be placed in any design using the design kit. It is especially
helpful if a design kit includes a custom version of the simulator to verify that the
correct simulator is being used. For more information, refer to “Adding Simulation
Data to a Design Kit” on page 6-1. The project or projects containing the sample
design(s) are archived and then stored in the <design_kit_name>/examples directory.

The 'expressions' Directory

The <design_kit_name>/expressions/ael directory contains files which contain
expressions that can be copied into a schematic or data display for processing before
or after simulation. For more information, refer to “Expressions” on page 6-18.

The 'hptolemy' Directory

The <design_kit_name>/hptolemy directory is not currently used by standard design
kit software, however, it may be used by specific or custom design kit software.
2-14 Understanding the Directory Contents

The 'netlist_exp' Directory

The <design_kit_name>/netlist_exp directory contains all files needed by the ADS
Netlist Exporter. By providing rules files for each component in a design kit, the
Netlist Exporter can output netlists in the proper form for many LVS tools. For more
information on incorporating the appropriate LVS information into a design kit, refer
to “Layout vs. Schematic Comparison” on page 6-16.

The 'scripts' Directory

The <design_kit_name>/scripts directory contains any custom shell or perl scripts
that you have developed for use with your design kit. For more information on
incorporating these scripts into your design kit, refer to Chapter 6, Additional Parts
for ADS Design Kits.

The 'utilities' Directory

The <design_kit_name>/utilities directory contains any custom AEL scripts that are
auxiliary in nature. Other AEL scripts that are used directly with the design kit are
stored in de/ael or circuits/ael as described in “The 'de' Directory” on page 2-12 and
“The 'circuit' Directory” on page 2-9. For more information on incorporating these
scripts into your design kit, refer to Chapter 6, Additional Parts for ADS Design Kits.

The 'verification' Directory

The <design_kit_name>/verification directory contains files that are used by the ADS
Design Kit Model Verification Toolkit to create a verification suite. These files are
appropriate to ship along with the design kit. For more information on the
verification tool, refer to “Verifying a Design Kit” on page 5-1.
Understanding the Directory Contents 2-15

Understanding the ADS Design Kit File Structure
2-16 Understanding the Directory Contents

Chapter 3: ADS Design Kit Tutorial
This chapter provides step-by-step instructions for creating the basic parts of a
sample design kit consisting of several typical RFIC foundry kit components:

• A device with model reference

• An include component

• A device with subcircuit model

• A device with Symbolically Defined Device (SDD) reference

Even though these components may not be typical for all design kits, the steps are
applicable to a design kit in any technology.

To complete this tutorial, it is assumed that you have a basic working knowledge of
Advanced Design System, including the location of the ADS installation directory for
your computer or site. This tutorial will refer to your ADS installation directory,
which is defined as $HPEESOF_DIR. For example, on a PC, an ADS 2002 installation
is typically installed in C:/ADS2002. If you cannot find the installation directory on
your computer or the site-wide installation on a networked system, contact your
system administrator or CAD manager. For simplicity, the tutorial steps will assume
a typical PC installation.

Note The directory delimiter slash is shown as a forward slash (/). This should be
used in most cases in a design kit, especially in AEL files, where the backslash
character (\) is interpreted as a string formatting character. For example, “\n” is
interpreted as a new line character. The AEL system() function is one of the rare
cases where the back slash character may be required, and each backslash must be
preceded by an extra backslash to tell the system to interpret it literally. The list of
known characters that cause this problem are:

\n=new line
\r=return
\f=form feed
\b=back space
\t=tab
3-1

ADS Design Kit Tutorial
Tutorial Overview
The list below shows the basic steps that will be performed in this tutorial and
includes a short description of each section so you can quickly get a sense of what is
required to build a simple design kit.

Note The completed sample design kit is available with the ADS design kit
software. For more information, refer to “Accessing the Supplied Sample Kit” on
page 3-46.

• “Creating the ads.lib File” on page 3-4 describes how to create the file (ads.lib)
that contains the design kits that will be loaded.

• “Creating the boot.ael File” on page 3-5 describes how to create a boot file
(boot.ael) to load the design kit.

• “Creating Component Symbols” on page 3-7 explains how to create a schematic
symbol (*.dsn) for each component in your design kit.

• “Creating Component Definitions” on page 3-9 discusses how to build a
component definition AEL file (mykit_item.ael) which defines how the
component is netlisted along with other properties.

• “Testing Your Component” on page 3-12 lists a few steps you can use to verify
that your components are working properly.

• “Providing Basic Documentation” on page 3-13 gives an example for creating a
simple text file (about.txt) used to document the design kit.

• “Making Components Accessible” on page 3-14 simply describes the two
methods available for setting up easy access to your design kit components.

• “Creating a Component Palette and Bitmaps” on page 3-14 describes how to
create bitmaps (*.bmp) for your design kit components. The AEL file
(palette.ael), which loads the bitmaps onto a palette and makes the palette
available in an ADS schematic window, is also described in this section.

• “Adding a Netlist Include Component” on page 3-18 describes how to create a
netlist include component which can be used to include model files (*.net) in
your netlist.

• “Creating an Example Design Using your Design Kit” on page 3-23 shows an
example schematic that uses the design kit created in the tutorial.
3-2 Tutorial Overview

• “Adding Components to the Library Browser” on page 3-26 describes two
methods for making your design kit components visible in the ADS library
browser.

• “Adding Demand Loaded Components” on page 3-29 describes how to create the
item definition file (*.idf) used for dynamically loading design kit components.

• “Using a Subcircuit Model” on page 3-31 provides an outline of how to include a
subcircuit model in your design kit using the information learned in the
tutorial.

• “Adding a Resistor with SDD Subcircuit Model” on page 3-36 describes another
component that uses a subcircuit model in a netlist file. It is included in the
tutorial to show a simple example of using a Symbolically Defined Device (SDD)
to define arbitrary current/voltage relationships.

Building the Basic Design Kit Parts
The first step in creating a design kit is to create the directory in which to store the
basic design kit parts after they have been built. This will be the directory that you
will eventually archive and distribute as the design kit. Create that directory now.
You can create this directory anywhere but to simplify the tutorial, it is assumed that
it will be created in the home directory ($HOME). Name this directory
my_design_kit.

Create the following subdirectories in my_design_kit.

design_kit

doc

circuit/symbols

circuit/ael

circuit/models

* circuit/bitmaps/pc

* circuit/bitmaps/unix

* circuit/records

de/ael

examples
Building the Basic Design Kit Parts 3-3

ADS Design Kit Tutorial
Note Directories marked with an asterisk (*) above are optional directories that are
used in this tutorial.

Creating the ads.lib File

As you will learn in “The ads.lib Template” on page 4-33, the ads.lib file contains the
information that tells ADS which design kits to load and where to get the specific
instructions for loading each kit.

To create the my_design_kit/design_kit/ads.lib file that will be used in this tutorial:

1. Open a text editor.

2. Enter the following line, exactly as it is written here, in a text file.

MY_DESIGN_KIT | path_to_design_kit_directory | de/ael/boot | mykit_v1

3. Save the file as:

$HOME/my_design_kit/design_kit/ads.lib

Note that this assumes that you have created the my_design_kit/design_kit
subdirectories under your $HOME directory as described in “Building the Basic
Design Kit Parts” on page 3-3.

This is now the template ads.lib file described in Chapter 2, Understanding the ADS
Design Kit File Structure and “The ads.lib Template” on page 4-33. The path cannot
be entered at this time since it requires knowledge of where the design kit will be
installed on the end user’s system.

The design kit software will set the path after the design kit has been installed and
when the ads.lib file is being copied to a predefined directory on the user’s system.
You will do this manually in the next step for your own testing.

For testing the design kit, this information will need to be available in the user
customization directory for design kits, $HOME/hpeesof/design_kit.

1. Determine if there is already a file named ads.lib in
$HOME/hpeesof/design_kit.

2. If there is not, simply copy the ads.lib file created in the last step to that
location. If there is already a file by that name, add the contents of the new file
to the existing file.
3-4 Building the Basic Design Kit Parts

3. Further edit this ads.lib file to set the actual design kit directory. For this
tutorial, that directory is c:/my_design_kit on a PC. This will be different on
unix.

4. Save the ads.lib file and close the text editor.

Creating the boot.ael File

An ael file called boot.ael must be provided so that ADS knows how to load the design
kit. From the boot.ael file, you can load other AEL files, such as those that will load
the item definition and palettes as described in later sections.

To create the de/ael/boot.ael file:

1. Open a text editor.

2. Copy the text in Table 3-1 into a new file. The sample boot.ael provided in
Table 3-1 includes more information than is required. This is provided to teach
you about printing debug information from an AEL file.
Building the Basic Design Kit Parts 3-5

ADS Design Kit Tutorial
3. Save the file as $HOME/my_design_kit/de/ael/boot.ael

Table 3-1 shows the contents of your new boot.ael file. This code will be added to later
in this tutorial. By accessing certain global variables, you can get the values from the
ads.lib file, as described in“Creating the ads.lib File” on page 3-4. These values are
stored in a list called designKitRecord. Debug tips are included directly in the

Table 3-1. The Boot File (boot.ael)

// boot.ael - This file resides in the de/ael directory of the design kit.
// It is loaded by the design kit infrastructure software if it is listed
// in the file ads.lib in one of 4 predefined locations, one of which is
// $HOME/hpeesof/design_kit. This file is used to load other AEL files
// such as palette.ael. It is also used to set up some global variables for
// use in other files.
// Some global variables that are available by default are:
// designKitRecord - this is a list which contains the 4 records from
// ads.lib (kit name, path, boot file, version).
// As soon as the design kit load process has finished, this variable is
// unset, so save the values as a variable with a different name if you
// want access to them later.
//
// MY_DESIGN_KIT - this is the first record from ads.lib. Its value is the
// second record from ads.lib, the path to the design kit.
// The following debug print statements can be used To view the values of
// these variables:
//
// To print a field in the list:
fputs(stderr, designKitRecord[0]);

// To view the special kit name/path variable. This name will change
// depending on the name of the kit as registered in the first field of the
// ads.lib entry

fputs(stderr, MY_DESIGN_KIT);

// Comment out all debug print statements before shipping your design kit.

// These path names will be used later to load other files.
decl MYKIT_BITMAP_DIR = sprintf("%s/circuit/bitmaps/%s/", MY_DESIGN_KIT,
 on_PC?"pc":"unix");
decl MYKIT_CIRCUIT_AEL_DIR = sprintf("%s/circuit/ael/", MY_DESIGN_KIT);
decl MYKIT_CIRCUIT_MODEL_DIR = sprintf("%s/circuit/models", MY_DESIGN_KIT);
decl MYKIT_DE_AEL_DIR = sprintf("%s/de/ael/", MY_DESIGN_KIT);
// To print a variable:
fputs(stderr, MYKIT_BITMAP_DIR);
3-6 Building the Basic Design Kit Parts

boot.ael code for your convenience. Remember to remove all debug print statements
before you ship your design kit.

Important Variables such as those in Table 3-1 called MY_DESIGN_KIT, etc., are
global variables. The scope of an AEL variable is not restricted to the file in which it
is defined. In other words, this variable must be unique in the system to avoid being
overwritten by another declaration of the same variable. Therefore, in the future
when you build design kits, make sure the name “MY_DESIGN_KIT” in boot.ael is
replaced by the actual name of your kit, which is the first field in the ads.lib file.

Viewing Debug Output

On unix, debug output is visible in the window from which ADS was invoked. On PC,
edit the shortcut property Target and add -d daemon.log to the end of the command
line (Example: C:/ADS2002/bin/hpads.exe -d daemon.log). This will enable you to
view output to stderr in a log window. Look for text in red. All other text is a
communication log. The information is also saved to a file called daemon.log in the
ADS startup directory.

Creating Component Symbols

The next part of your design kit to be created is a schematic symbol for each of your
components. The tutorial will guide you through one method of symbol creation,
copying an existing symbol. Chapter 4, Basic Parts of an ADS Design Kit describes
two other methods in “Schematic Symbol” on page 4-12.

Before creating your symbols, start ADS and create a new project called my_kit_prj in
which to build the component symbols. You can create this project anywhere, but to
simplify the tutorial, it is assumed that the project will be created in your home
directory.

To copy an existing symbol:

1. Open a schematic page in your new project.

2. In the schematic window, choose View > Create/Edit Schematic Symbol . The
Symbol Generator dialog box appears.

3. In the Symbol Generator dialog box, select the Copy/Modify tab.
Building the Basic Design Kit Parts 3-7

ADS Design Kit Tutorial
4. Set the Symbol Category to Devices-BJT.

5. Click the BJT_NPN symbol so the SYM_BJT_NPN appears in the Symbol
Name field, then click OK.

Note There is a warning about symbol pin/component port mismatch - this can
be ignored.

6. Once you have copied the built-in symbol, you can edit the symbol if desired.
However it will not be modified for this example.

7. Choose File > Save Design As and save the symbol file as a new symbol called
SYM_mykit_npn.dsn.

You should now have a symbol for use in your design kit. The file containing this
symbol was saved in the networks directory of the project as a .dsn file. You may also
see an .ael file with the same name, which will not be used.

At this time, you should delete any .ael files that may be present and copy the symbol
file into the proper subdirectory of the design kit directory. That directory is
$HOME/my_design_kit/circuit/symbols.
3-8 Building the Basic Design Kit Parts

Creating Component Definitions

A component definition is added to the design environment by a create_item()
command provided in an AEL file. The create_item() command is very complex and is
documented in Chapter 15 of the “AEL” documentation.

Chapter 4, Basic Parts of an ADS Design Kit also includes more information about
the create_item() function. For this tutorial, the most you need to understand is how
to define a symbol, a list of parameters, and how the component is netlisted. These
are all parts of the item definition.

The create_item() functions for your sample components should be defined as follows
in a file called mykit_item.ael. For a small design kit, all the item definitions could be
combined into one file like this. Another acceptable method is to create a separate file
for each item. This is especially recommended if there are parameter callbacks
associated with each component. In this case, a file called mykit_npn.ael would be
appropriate. It is, however, acceptable to leave all components in one mykit_item.ael
file, which is what the tutorial will instruct you to do.

Since the create_item() command is somewhat complex, you might find it helpful to let
the system start to create your component definition for you. You can follow the steps
below, which will guide you through creating and modifying the file, or you can skip
steps 1-10 and just copy and paste the code shown in Table 3-2. Save the file as
mykit_item.ael in the circuit/ael directory of your design kit and then perform step
11, which instructs the design kit to load the item definition.

To create a component definition for your BJT component:

1. From the ADS Main window, choose File > New Design to open a new design in
ADS. The New Design dialog box appears.

2. In the New Design dialog box, name the design mykit_npn. Click OK to close the
New Design dialog. A new schematic window is generated with the title
mykit_npn.

3. From the new schematic window, choose File > Design Parameters . The Design
Parameters dialog box appears.

4. In the General tab, enter the following information:

• Description: MYKIT Nonlinear Bipolar Transistor, NPN

• Component Instance Name: BJT

• Symbol Name: SYM_mykit_npn
Building the Basic Design Kit Parts 3-9

ADS Design Kit Tutorial
• Library Name: MY_DESIGN_KIT

• Model: Built-in Component

• Artwork Type: None

Accept the defaults for all other fields.

5. In the Parameters tab, enter the following Parameter Names and then click the
Add button. Repeat for all parameters listed below.

• Model

• Area

• Region

• Temp
3-10 Building the Basic Design Kit Parts

Note The Design Parameter dialog box contains a parameter option check box
labeled Not Edited. This is used if a parameter value never needs to be modified
by the user. However, it will also make the parameter un-editable by callbacks
as well, so do not set that flag if the parameter needs to be modified by a
parameter callback.

6. Click OK in the Design Parameters dialog to save and exit from the dialog.

7. Save the design, without entering anything in the schematic window.

8. Find the AEL file which was saved with the item definition. It will be in the
networks directory of the project and will be called mykit_npn.ael.

9. Copy mykit_npn.ael to your design kit circuit/ael directory and rename it
mykit_item.ael.

10. Edit the file so that it looks the same as the file in Table 3-2. Also, delete the
last 3 lines of the file.

11. In order for ADS to read the new mykit_item.ael file just created, the boot file
must be modified to load the mykit_item.ael file. Add the following line to the
end of the boot.ael and save the boot.ael file.

load(strcat(MYKIT_CIRCUIT_AEL_DIR,"mykit_item"), "CmdOp");

Note When writing AEL code, you must be very careful that each quote,
semi-colon, parenthesis and bracket is exactly as shown. The AEL interpreter
will fail if there are errors in the file, and it may not tell you where the errors
are. If you get error messages when starting ADS, check your file against the
file in Table 3-2 or compare it against the tutorial file shipped with the software.
Building the Basic Design Kit Parts 3-11

ADS Design Kit Tutorial
Testing Your Component

You will now be able to test your first component if you have set up all the files
defined so far in this chapter. The files shown in Table 3-3 should now be saved in
their respective directories under the design kit top level directory
($HOME/my_design_kit).

To test your new component:

1. Restart ADS to automatically pick up the new files.

Table 3-2. The Item Definition File (mykit_item.ael)

set_simulator_type(1);
create_item("mykit_npn",
 "MYKIT Nonlinear Bipolar Transistor,NPN",
 "BJT",NULL, NULL, NULL,
 standard_dialog, "",
 CmpModelNetlistFmt, "",
 ComponentAnnotFmt,
 "SYM_mykit_npn",
 no_artwork, NULL,
 ITEM_PRIMITIVE_EX,
 create_parm("Model", "Model instance name", 0,
 "StdFileFormSet",UNITLESS_UNIT,prm("StdForm","BJTM1")),
 create_parm("Area","Scaling Factor, (default: 1.0)",
 PARM_OPTIMIZABLE | PARM_STATISTICAL,
 "StdFileFormSet",UNITLESS_UNIT,prm("StdForm","")),
 create_parm("Region",

"DC operating region, 0=off, 1=on, 2=rev, 3=sat, (default: on)",
 0, "StdFileFormSet",UNITLESS_UNIT,prm("StdForm","")),
 create_parm("Temp", "Device operating temperature, (default: 25)",
 PARM_OPTIMIZABLE | PARM_STATISTICAL,
 "StdFileFormSet",TEMPERATURE_UNIT,prm("StdForm","")));

Table 3-3. Tutorial Directory and File Locations

Directory File(s)

design_kit ads.lib (plus a copy of it in $HOME/hpeesof/design_kit/ads.lib)

de/ael boot.ael

circuit/symbols SYM_mykit_npn.dsn

circuit/ael mykit_item.ael
3-12 Building the Basic Design Kit Parts

2. From the ADS Main window, choose DesignKit > List Design Kits . The List ADS
Design Kits dialog box appears. Your design kit should be listed in the Name
column of the dialog and the Status should be enabled.

3. Open a schematic window and type the name of your component in the
Component History dialog.

4. After entering the component, locate your cursor onto the schematic page and
place your component.

If there are no apparent problems after performing the steps listed above, your new
design kit component should be ready to use.

Providing Basic Documentation

Using a text editor, you will now create the about.txt file to document your new design
kit. This file should include the information listed in the template in Table 4-6. Note
that the template is only a suggested format for the file. You may modify the format of
the file or include information not listed in the template.

To create the my_design_kit/doc/about.txt file:

1. Open a text editor.

2. Add the following information to a file:

Name: MY_DESIGN_KIT

Version: 1.0

Date: 11/15/2001

Description: This design kit contains the components mykit_npn and
mykit_include.

Revision History: Rev. 1.

3. Save the new file as $HOME/my_design_kit/doc/about.txt

Component History
Drop-down List
Building the Basic Design Kit Parts 3-13

ADS Design Kit Tutorial
Making Components Accessible

There are two methods for accessing your design kit components:

• A component palette on the schematic window

• The ADS Library Browser

The component palette is on the left border of the schematic window. The library
browser can be opened by choosing Insert > Component > Component Library . The
default tool bars also include a Display Component Library List button to open the
library browser.

Library control and records files are used to load the necessary information into the
library browser.

While this tutorial will show you how to setup both the component palette and the
library browser, you may decide to only provide one or the other. For more
information on choosing one of the two, refer to “Component Palette vs. Library
Browser” on page 4-15.

Creating a Component Palette and Bitmaps

Defining a component palette consists of two steps:

• Creating two bitmap files (one for pc and one for unix) for each component.

• Writing an AEL function to connect the bitmap to the component and load the
definition into the system.

Chapter 4, Basic Parts of an ADS Design Kit, discusses the details of bitmap creation
for design kits. A new tool offered within ADS is the DesignGuide Developer Studio.
The Developer Studio can be installed from your ADS installation CD, if it is not
already installed, and it does not require a license to run. A design guide is different
than a design kit, but the bitmap tool can be used for both. For more information on
the differences between DesignGuides and design kits, refer to “Design Kits versus
Libraries” on page 1-3. This tool is mentioned here because it provides a bitmap
editor which is specially designed to create bitmaps for use in ADS. The Save As UNIX
and Save As PC menu picks facilitate saving the bitmaps in both formats. Sample
bitmaps for all ADS components are available with the tool to copy as starting
3-14 Building the Basic Design Kit Parts

material. For an explanation of how to use the various features of the tool, refer to
Chapter 5 of the “DesignGuide Developer Studio” documentation.

For a design kit with a large number of components, more than one palette group
may be defined. For the sample kit in this tutorial, all components will go into one
palette.

To create your UNIX and PC bitmaps:

1. From the ADS Main window, choose DesignGuide > DesignGuide Developer
Studio > Start DesignGuide Studio. The DesignGuide Developer Studio dialog box
appears. A warning dialog may appear; however, this does not apply to using
just the bitmap editor so close the warning dialog box and proceed with step 2.

2. From the Developer Studio dialog, choose Tools > Bitmap Editor . The Bitmap
Editor dialog box appears.

3. From the Bitmap Editor, choose File > Open . The Open Bitmap dialog box
appears.

4. Sample bitmaps are provided in:

$HPEESOF_DIR/designguides/projects/dgstudio/ui/bitmaps/adsbmps

Open the bitmap for BJTNPN.BMP and edit the bitmap as needed to customize
it for your design kit (see Figure 3-1).

Note On unix, change the Filter in the Open Bitmap dialog box to capital
*.BMP to see the BJTNPN.BMP file.
Building the Basic Design Kit Parts 3-15

ADS Design Kit Tutorial
Figure 3-1. The mykit_npn.bmp File in the Bitmap Editor

5. After editing your bitmap file, save a UNIX and a PC version of the bitmap in
the appropriate design kit directories. Remember that these are:

• my_design_kit/circuit/bitmaps/pc

• my_design_kit/circuit/bitmaps/unix

Name the BJT bitmap mykit_npn.bmp

The final step in making the palette available is to create an AEL file called
palette.ael, which contains a function call to the ADS function,
de_define_palette_group(). To create the de/ael/palette.ael file:
3-16 Building the Basic Design Kit Parts

1. Open a text editor.

2. Copy the text in Table 3-4 into a file.

Note Do not include the file extension (.bmp) on the bitmap name in
de_define_palette_group() . This will cause the function to fail on some unix
systems.

3. Save the file as $HOME/my_design_kit/de/ael/palette.ael

4. In order for ADS to read the new palette.ael file, the boot file must be modified
to load the palette.ael file. Add the following line to
my_design_kit/de/ael/boot.ael now:

load(strcat(MYKIT_DE_AEL_DIR,"palette"), "CmdOp");

Note The load() function does not need the .ael extension on the filename it is
loading. If the file palette.atf is found with a newer time stamp than palette.ael,
the palette.ael file will not be recompiled. If palette.ael is newer, it will be
recompiled into a new palette.atf and then loaded.

For more information about the palette function, refer to “Component Palette”
on page 4-16.

At this time, you can test that the palette is loaded correctly. The files shown in
Table 3-5 should now be saved in their respective directories under the design kit top
level directory.

Table 3-4. The palette.ael File

de_define_palette_group(SCHEM_WIN, "analogRF_net",
 "MYKIT Components","MYKIT Components", 0,
 "mykit_npn", "MYKIT NPN Bipolar Transistor",
 strcat(MYKIT_BITMAP_DIR,"mykit_npn"));
Building the Basic Design Kit Parts 3-17

ADS Design Kit Tutorial
To test your changes:

1. Restart ADS to load the design kit.

2. Open the my_kit_prj project in ADS.

3. From the schematic window, select the new palette called MY_DESIGN_KIT
from the Component Palette List.

4. From the palette list on the left side panel of the schematic window, select the
component from MY_DESIGN_KIT and drag it onto the schematic page.

Adding a Netlist Include Component

The tutorial sample design kit will get its model data from a netlist file with a model
card that would typically be translated from another simulator such as HSpice, with
the ADS Netlist Translator.

For the ADS simulator to find an externally referenced file, a design kit must contain
a netlist include component. A built-in component called NetlistInclude is provided on
the Data Items palette. On this component, you must browse to or manually enter the
name of the included file. The built-in NetlistInclude component is handy for testing
while building a design kit, but customers who use a design kit should not have to
know where the model files are stored or be bothered with manually entering the file
name. The tutorial will guide you through creating a custom include component
where the file name is defined automatically for the design kit user.

Table 3-5. Tutorial Directory and File Locations

Directory File(s)

design_kit ads.lib (plus a copy of it in $HOME/hpeesof/design_kit/ads.lib)

de/ael boot.ael
palette.ael

circuit/symbols SYM_mykit_npn.dsn

circuit/ael mykit_item.ael

doc about.txt

circuit/bitmaps/pc mykit_npn.bmp

circuit/bitmaps/unix mykit_npn.bmp
3-18 Building the Basic Design Kit Parts

Advanced Feature Tip If you place the NetlistInclude component and double click to
view its parameters, select the IncludeFiles parameter and notice the field on the
right side of the dialog called Section. This is one implementation of selecting a
corner case as defined in a section of a model file. In your design kit, you will want to
present the user with the list of available corner case labels, as opposed to making
them fill in a blank. This is done by the definition of forms and formsets, as described
in “Forms and Formsets” on page 4-11. An example of a component using this
capability is also include in “Example Process Component with Forms and Formsets”
on page 4-25.

Creating a Netlist Include Component Symbol

Create a netlist include component symbol, using the same process as described in
“Creating Component Symbols” on page 3-7.

1. Open the my_kit_prj project in ADS if it is not already open.

2. In the schematic window, choose View > Create/Edit Schematic Symbol . The
Symbol Generator dialog box appears.

3. In the Symbol Generator dialog box, select the Copy/Modify tab.

4. Set the Symbol Category to Data Items.

5. Click the Netlist symbol so the NetlistInclude appears in the Symbol Name
field, then click OK.

6. Once you have copied the built-in symbol, you can edit the symbol.

7. It is beneficial for the words on the symbol to identify the design kit. Change
the words Netlist Include to My Kit Include, as shown in Figure 3-2.

Figure 3-2. My Kit Include Component Symbol

For more information on editing symbol text, refer to “Editing Existing Text and
Text Attributes” in Chapter 6 of the ADS “User’s Guide”.
Building the Basic Design Kit Parts 3-19

ADS Design Kit Tutorial
8. Choose File > Save Design As and save the symbol file as a new symbol called,
SYM_mykit_include.dsn.

9. Copy the saved symbol file, SYM_mykit_include.dsn, from the
$HOME/my_kit_prj/networks directory to the
$HOME/my_design_kit/circuit/symbols directory.

Creating the Netlist Include Component Bitmap

A bitmap must also be created for the new mykit_include component.

To create bitmaps for the include component, use the same general process as
described in “Creating a Component Palette and Bitmaps” on page 3-14:

1. Create a bitmap that looks like the one in Figure 3-3. The NetlistInclude.bmp
can be used to create your bitmap and is located under
$HPEESOF_DIR/circuit/bitmaps.

Figure 3-3. The mykit_include.bmp Bitmap

2. Save the UNIX and PC versions of the bitmap to the
$HOME/my_design_kit/circuit/bitmaps/unix (and pc) directories. The bitmap
files should be named mykit_include.bmp.

3. Modify the palette file (palette.ael) to add the new component to the palette as
shown in Table 3-6.

In a palette with a long list of components, make sure that a custom include or
process component is placed at the top of the palette. This is a visual reminder

Table 3-6. The Modified palette.ael File

de_define_palette_group(SCHEM_WIN, "analogRF_net",
 "MYKIT Components", "MYKIT Components", 0,
 "mykit_npn", "MYKIT NPN Bipolar Transistor",
 strcat(MYKIT_BITMAP_DIR,"mykit_npn"),
 "mykit_include", "MYKIT Netlist Include",
 strcat(MYKIT_BITMAP_DIR,"mykit_include"));
3-20 Building the Basic Design Kit Parts

to users that this component must be present in a schematic in order to
simulate a circuit that uses any of the other components on that palette.

Modifying the Item Definition File

1. Open the $HOME/my_design_kit/circuit/ael/mykit_item.ael file.

2. Append the netlist callback and item definition for the include component to
your existing item definition file (mykit_item.ael). The create_item() function call
that you add should look like Table 3-7.

This item does not contain any parameters, but it does contain a netlist callback
on the last line. This is provided so that when the component is netlisted for the
simulator, the netlisting code can determine the location of the model file to

Table 3-7. The create_item() Function Call

set_simulator_type(1);

defun mykit_include_netlist_cb (cbP, clientData, callData)
{
 decl fileName="", netlistString="";
 fileName = strcat(MYKIT_CIRCUIT_MODEL_DIR, "mykit_models.net");
 netlistString=strcat(netlistString, "#include \"",
fileName,"\"\n");
 return(netlistString);
}
create_item("mykit_include", // name
 "MYKIT Netlist Include", // label
 "mykit_include", // prefix
 ITEM_UNIQUE|ITEM_NOT_NETLIST_IF_SUB, // attribute
 -1, // priority
 NULL, // iconName
 standard_dialog, // dialogName
 NULL, // dialogData
 ComponentNetlistFmt, // netlistFormat
 "mykit_include", // netlistData
 ComponentAnnotFmt, // displayFormat
 "SYM_mykit_include", // symbolName
 no_artwork, // artworkType
 NULL, // artworkData
 0, // extraAttrib
 list (dm_create_cb (ITEM_NETLIST_CB,
"mykit_include_netlist_cb", NULL, TRUE)));
Building the Basic Design Kit Parts 3-21

ADS Design Kit Tutorial
include. Using path information saved in boot.ael, the callback generates a
#include statement that points to the file mykit_models.net with a full path.

Notice that the netlist callback function is defined before the create_item()
function. This is required if the .ael file will be compiled into an .idf file for
demand-loaded components.

For more information on netlist callbacks, refer to “Netlist Callbacks” on
page 6-14.

Adding a Model File

For this tutorial example, a simple NPN model with a few default values will be
added to the design kit.

To add the my_design_kit/circuit/models/mykit_models.net file:

1. Open a text editor.

2. Copy the text below into a file.

model MYKIT_NPN_MODEL BJT NPN=1 PNP=0 Lateral=0 RbModel=0 Approxqb=1

3. Save the model file as:

$HOME/my_design_kit/circuit/models/mykit_models.net

Your design kit should now contain the files shown in Table 3-8.

Table 3-8. Tutorial Directory and File Locations

Directory File(s)

design_kit ads.lib (plus a copy of it in $HOME/hpeesof/design_kit/ads.lib)

de/ael boot.ael
palette.ael

circuit/symbols SYM_mykit_npn.dsn
SYM_mykit_include.dsn

circuit/ael mykit_item.ael

doc about.txt

circuit/bitmaps/pc mykit_npn.bmp
mykit_include.bmp

circuit/bitmaps/unix mykit_npn.bmp
mykit_include.bmp

circuit/models mykit_models.net
3-22 Building the Basic Design Kit Parts

Creating an Example Design Using your Design Kit

Now, your design kit is ready for use in designing a circuit.

To use your new design kit:

1. Restart ADS to make sure all the information is loaded.

2. Start a new project and open a schematic window. Name the project bjt_dc_prj.

3. Using the BJT and Include components from your design kit, enter the
schematic shown in Figure 3-4.

Figure 3-4. Example Schematic

4. Set the model parameter on the BJT to MYKIT_NPN_MODEL. This is the
same name as the model in the model file created in “Adding a Model File” on
page 3-22.

5. Insert the simulation components and include component shown in Figure 3-5
onto the schematic started in step 3. Figure 3-4 and Figure 3-5 will be combined
into one schematic.
Building the Basic Design Kit Parts 3-23

ADS Design Kit Tutorial
Figure 3-5. Simulation and Include Components

6. Simulate the circuit and plot IC.i vs. VCE. Your plot should look like the plot
shown in Figure 3-6.
3-24 Building the Basic Design Kit Parts

Figure 3-6. IC.i vs. VCE Simulation Results

7. Save the design and the data display. Call the files bjt_dc.dsn and bjt_dc.dds.

8. Using the File > Archive menu pick from the ADS Main window, archive the
project. Save the archived project as bjt_dc_prj.zap in the
my_design_kit/examples directory.

This completes the first part of the tutorial. You have now created a simple design kit.
You could, at this point, refer to “Packaging for Distribution” on page 5-2 to prepare
your design kit for distribution to an end user.

The example design kit that is shipped with the ADS 2001 Add-on release software is
included in an archived copy of the project saved at this state. The sample design kit
is located in $HPEESOF_DIR/examples/DesignKit/bjt_dc_prj/design_kit. From the
ADS unarchive dialog box, you can browse to the examples directory of the shipped
design kit and unarchive it anywhere on your system to compare it to the example
you have just created.

The last part of the tutorial will cover the following topics:

• “Adding Components to the Library Browser” on page 3-26

• “Adding Demand Loaded Components” on page 3-29

• “Using a Subcircuit Model” on page 3-31

• “Adding a Resistor with SDD Subcircuit Model” on page 3-36

• “Accessing the Supplied Sample Kit” on page 3-46
Building the Basic Design Kit Parts 3-25

ADS Design Kit Tutorial
Adding Components to the Library Browser

This is an optional step. If you choose to access your components from the component
palette only, you may skip this step. The many advantages of the library browser,
especially when using the control and records files, are outlined in “Component
Palette vs. Library Browser” on page 4-15. Information is also provided in to help you
decide if you should use the library browser in its simple form, complex form, or not
at all.

Using the library_group() Function

The simplest way to setup design kit components to be visible in the library browser
is by using the library_group() function. This is added to the palette.ael file.

To setup your tutorial components to be visible in the library browser:

1. In a text editor, open the $HOME/my_design_kit/de/ael/palette.ael file.

2. Add the following line to the end of the file.

library_group("MYKIT", "MYKIT Components", "mykit_npn",
"mykit_include");

Note that the names of the components that are listed here must match the
names in the item definition file mykit_items.ael. For more details on the
library_group() function, refer to “Library Browser” on page 4-18, as well as
Chapter 15 of the “AEL” documentation.

3. Save the palette.ael file.

4. Restart ADS and open the library browser from the Insert > Component >
Component Library menu pick in the schematic window.

5. Verify that the library is listed, that the components are selectable, and that
you can place the components in a schematic.
3-26 Building the Basic Design Kit Parts

Setting Up a Control and Records Files

The second method for defining libraries for the library browser consists of setting up
a control file and a set of one or more records files. For more information on the
details of the file formats, refer to “Library Browser” on page 4-18.

To setup the control file, my_design_kit/circuit/records/mykit.ctl:

1. In a text editor, open the $HOME/my_design_kit/de/ael/palette.ael file that you
edited in “Using the library_group() Function” on page 3-26.

2. Comment out the library_group() function call that you entered in the palette.ael
file in the previous section of the tutorial.

3. Open a text editor and create the file shown in Table 3-9.

4. Save the new file as mykit.ctl in the $HOME/my_design_kit/circuit/records
directory.

5. Continue to the next section to write the records file.

Table 3-9. The Control File (mykit.ctl)

<?xml version="1.0" ?>
<LIBRARIES>
 <LIBRARY>
 <NAME>MYKIT from control file</NAME>
 <CATEGORY>DL</CATEGORY>
 <RECORD_FILES>mykit.rec</RECORD_FILES>
 </LIBRARY>
</LIBRARIES>
Building the Basic Design Kit Parts 3-27

ADS Design Kit Tutorial
To create the records file, which is referred to in the control file in Table 3-9:

1. In a text editor, create the file my_design_kit/circuit/records/mykit.rec, as
shown in Table 3-10.

2. Save the new file as mykit.rec, in the $HOME/my_design_kit/circuit/records
directory.

3. After saving both the control and records files, restart ADS. The mykit.ctl and
mykit.rec files will be located automatically by the software when the design kit
is loaded.

4. Open a project and a schematic window.

5. Access the library browser and verify that the library is now called "MYKIT
from control file". If it is displayed as expected, edit the control file to remove
the words "from control file". This text was inserted temporarily to ensure that
the browser entries actually came from the control file and not from the
library_group() function as defined in “Using the library_group() Function” on
page 3-26.

Table 3-10. The Records File (mykit.rec)

<?xml version="1.0" ?>
<COMPONENTS>
 <COMPONENT>
 <NAME>mykit_npn</NAME>
 <DESCRIPTION>MYKIT NPN Bipolar Transistor</DESCRIPTION>
 <LIBRARY>MYKIT</LIBRARY>
 <PLACEMENT>NOLAYOUT</PLACEMENT>
 </COMPONENT>
 <COMPONENT>
 <NAME>mykit_include</NAME>
 <DESCRIPTION>MYKIT Netlist Include</DESCRIPTION>
 <LIBRARY>MYKIT</LIBRARY>
 <PLACEMENT>NOLAYOUT</PLACEMENT>
 </COMPONENT>
</COMPONENTS>
3-28 Building the Basic Design Kit Parts

Note The format of the control and records files is very strict. Each space, bracket
and slash is very important. If you do not see your library in the library browser,
check your files very carefully against the files in Table 3-9 and Table 3-10. Correct
any errors that you may find and restart ADS.

To make it easier to see your library, collapse all libraries from the toolbar by clicking
the Collapse Libraries icon in the Component Library/Schematic dialog box.

Adding Demand Loaded Components

There is one more optional step in the tutorial related to setting up components. You
can specify that components be loaded into ADS only when they are selected for
placement. This is called demand-loading. As described in “Demand Loaded
Components” on page 4-21, one more file can be added to the circuit/records directory.
This file is called an item definition file (* .idf) and is a binary version of all the item
definitions created in the mykit_item.ael file.

Note The example design kit shipped with ADS was saved after the previous section
so it does not contain the .idf file described in this section. This is because this section
replaces some of the files created in previous sections of the tutorial.

The advantages of using an item definition file are:

• Dynamic loading of components

• Faster loading speed

• Lower memory usage

When the item definition file (.idf) is used, components are loaded into a hash table
and then loaded into ADS only when needed. For a large kit, there is a substantial
loading time and memory usage savings.

The .idf file is created by a utility program called hpedlibgen that is shipped with
ADS and is stored in the bin directory under $HPEESOF_DIR (the ADS installation
directory).
Building the Basic Design Kit Parts 3-29

ADS Design Kit Tutorial
Note $HPEESOF_DIR/bin must be in your path to use this utility, however, it
should already be in your path if you are running ADS.

For the next step in the tutorial,

1. Open a text editor and create a file in the circuit/records directory called
mykit.list. This file will be used by hpedlibgen and must contain the name of all
AEL files with item definitions in them, one filename per line in the list file. For
our small kit, there is only one file. A larger kit may use one file per component.

2. The file mykit.list for the tutorial should contain the single line:

../ael/mykit_item.ael

The section on “Demand Loaded Components” on page 4-21 describes how the
create_item() function call must be the last function in the block of functions
related to each component. The program hpedlibgen uses the end of this
function as the key to start reading the next item. This tutorial has not set up
any parameter callbacks or other items that would typically be stored with the
item definition other than the single netlist callback for the include component.

3. Enter the command to create the .idf file now. The syntax for running the
program for the tutorial is:

hpedlibgen -list mykit.list -out mykit.idf

To test the file, follow the steps below to remove the other methods of defining
components and palettes that have been described so far in the tutorial.

1. Move the file circuit/ael/mykit_item.ael away to a safe place outside of the
design kit directory.

2. Edit the file de/ael/boot.ael and comment out the line to load mykit_item.ael as
shown below.

// load(strcat(MYKIT_CIRCUIT_AEL_DIR,"mykit_item"), "CmdOp");

Note that comment characters in AEL are two forward slashes at the beginning
of the line (//) or the traditional C programming slash and asterisk pair
delimiting a complete block of code (/* this text is commented out */).

3. In palette.ael, make sure the library_group() function call is commented out.

Restart ADS to make sure the components are still available and can be placed from
the palette and from the library browser. Their visibility on the palette or in the
3-30 Building the Basic Design Kit Parts

library browser is not an indication of success. The demand loading will take place
when the items are selected and placed. This can be verified by checking the
communication log between ADS and the library browser for a query of the form:

QUERY_ITEM_DEFINITION_RESPONSE dsn-type component-name library-name
library-title ATF-file file-date file-location

The communication log will be generated if ADS is started with the optional
command line argument “-d daemon.log”. On a PC, add this to the shortcut property
“Target”. The file daemon.log will be saved into the directory from which ADS is
started.

Using a Subcircuit Model

The section on “Adding a Model File” on page 3-22 explains how to set up a
component that refers to a model card in an included netlist file. It is also possible to
use a subcircuit model in the same manner if a simple model card is not sufficient to
represent the model.

As with a simple model card, the subcircuit model is typically translated from
another simulator with the ADS SPICE or Spectre Netlist Translator, or it can be
generated from IC-CAP.

The files or code fragments listed here can be added to the design kit created in the
tutorial as an example of a subcircuit model for the BJT transistor.

The files that need to be modified or added are:

The new content for each file is listed below. Refer to the earlier sections in the
tutorial for a reminder of the steps required to update the sample kit.

circuit/ael/mykit_item.ael - add the new item definition

circuit/bitmaps - add new bitmaps

circuit/models/mykit_models.net - add new model to the model file

circuit/records/mykit.rec file - add new component

circuit/records/mykit.idf file - recompile to add new component

circuit/symbols - no change, ok to reuse the same symbol

de/ael/palette.ael - add new component
Building the Basic Design Kit Parts 3-31

ADS Design Kit Tutorial
The steps below provide a general outline of the process.

1. Add the new item definition to circuit/ael/mykit_item.ael as shown in
Table 3-11.

2. Add the new bitmaps (see Figure 3-7) to the pc and unix subdirectories.

Figure 3-7. my_design_kit/circuit/bitmaps/mykit_npn_subckt.bmp

Table 3-11. my_design_kit/circuit/ael/mykit_item.ael

set_simulator_type(1);

create_item("mykit_npn_subckt",
 "MYKIT Nonlinear Bipolar Transistor Subckt, NPN",
 "BJT",
 NULL, NULL, NULL,
 standard_dialog, "",
 CmpModelNetlistFmt, "",
 ComponentAnnotFmt,
 "SYM_mykit_npn",
 no_artwork, NULL,
 ITEM_PRIMITIVE_EX,
create_parm("Model", "Model instance name", PARM_NOT_EDITED,
"StdFileFormSet",UNITLESS_UNIT,prm("StdForm","bjt_nhf"))
);
3-32 Building the Basic Design Kit Parts

3. Add the new model to the model file circuit/models/mykit_models.net as shown
in Table 3-12.

Table 3-12. my_design_kit/circuit/models/mykit_models.net

; subckt model for npn
define bjt_nhf (C B E)
L:LE E 4 L=1.015E-10
L:LB B 5 L=1.959E-10
C:CC C 0 C=2.505E-13
NPN:Q1 C 5 4 Area = 1

model NPN BJT NPN=yes \
Is = 1.467E-15 Bf = 221.5 Nf = 0.9915 Vaf = 44.63 Ikf = 100 \
Ise = 2.823E-13 Ne = 2.5 Br = 6.493 Nr = 0.9902 Var = 1.841 \
Ikr = 100 Isc = 5.706E-15 Nc = 1.171 Rb = 3.579 Irb = 1E-12 \
Rbm = 3.202 \
Re = 0.4211 \
Rc = 0.3492 \
Xtb = 0 \
Eg = 1.11 \
Xti = 3 \
Cje = 2.458E-12 \
Vje = 1.004 \
Mje = 0.502 \
Tf = 1.886E-11 \
Xtf = 13.97 \
Vtf = 0.2296 \
Itf = 2.225 \
Ptf = 30.72 \
Cjc = 1.685E-12 \
Vjc = 0.6296 \
Mjc = 0.3898 \
Xcjc = 0.3 \
Tr = 1E-09 \
Cjs = 9.985E-14 \
Vjs = 0.8137 \
Mjs = 0.3509 \
Fc = 0.9 \
Tnom = 27
end bjt_nhf
Building the Basic Design Kit Parts 3-33

ADS Design Kit Tutorial
Note In the file above, mykit_models.net, the define keyword is used to define a
subcircuit model. ADS does not support nested subcircuits, so another define cannot
be included before the matching end keyword. A design kit user can inadvertently
cause this to happen. See “Avoiding Illegal Nested Subcircuits” on page 3-35 for tips
on how to prevent this from happening.
3-34 Building the Basic Design Kit Parts

4. Add the new component to the records file circuit/records/mykit.rec as shown in
Table 3-13.

5. Recompile the item definition file to add the new components.

hpedlibgen -list mykit.list -out mykit.idf

6. Since you can re-use the same symbols, there is no need to change the
circuit/symbols.

7. Add the new component to the de/ael/palette.ael file as shown in Table 3-14.

8. The new component is used the same way the old component was used. In the
example project, delete the existing npn component and place an instance of the
new subckt npn.

Avoiding Illegal Nested Subcircuits

ADS does not support nested subcircuits. Nested subcircuits will occur in a netlist
when a hierarchical schematic has an include component, that includes a file with a
subcircuit, which is used in any level of hierarchy other than the top level. To prevent
this from occurring, use the ITEM_NOT_NETLIST_IF_SUB attribute code when
defining the netlist include component. This attribute code is described in “Attribute
Code Examples” on page 4-7. This will not prevent the user from placing the

Table 3-13. my_design_kit/circuit/records/mykit.rec

<COMPONENT>
 <NAME>mykit_npn_subckt</NAME>
 <DESCRIPTION>MYKIT NPN Bipolar Transistor Subckt</DESCRIPTION>
 <LIBRARY>MYKIT</LIBRARY>
 <PLACEMENT>NOLAYOUT</PLACEMENT>
</COMPONENT>

Table 3-14. my_design_kit/de/ael/palette.ael

de_define_palette_group(SCHEM_WIN, "analogRF_net", "MYKIT Components",
 "MYKIT Components", 0,
 "mykit_npn", "MYKIT NPN Bipolar Transistor",
 strcat(MYKIT_BITMAP_DIR,"mykit_npn"),
 "mykit_npn_subckt", "MYKIT NPN Bipolar Transistor Subckt",
 strcat(MYKIT_BITMAP_DIR,"mykit_npn_subckt"),
 "mykit_include", "MYKIT Netlist Include",
 strcat(MYKIT_BITMAP_DIR,"mykit_include")
);
Building the Basic Design Kit Parts 3-35

ADS Design Kit Tutorial
component in a lower level of hierarchy but it will prevent the component from being
netlisted. Your design kit instructions should include a warning that include
components only be placed in the top level of hierarchy. Otherwise your users will see
an error message during simulation indicating that the system cannot find the
models that are in the included netlist because the netlist will not have been
included.

Adding a Resistor with SDD Subcircuit Model

This section describes another component that uses a subcircuit model in a netlist
file. It is included in the tutorial to show a simple example of using a Symbolically
Defined Device (SDD) to define arbitrary current/voltage relationships. It also shows
the need for defining a noise voltage source for this resistor, which is calculated using
the relationship Vn=4kTReff.

Two versions of the resistor model are included with different resistivities (ρ) to
demonstrate the use of forms and selecting types from the edit component dialog
when placing a component. An example of a circuit which contains this component is
shown in Figure 3-8 and is also included in the bjt_dc_prj shipped with the sample
design kit code.

Figure 3-8. Example Circuit

In this example, a single current source is used to drive 1 amp through the resistor
such that the value of the voltage across the resistor equals the resistance value
specified on the component. Performing a simulation and then annotating the DC
3-36 Building the Basic Design Kit Parts

results (use the menu pick Simulate > Annotate DC Solution) will verify that the
correct model is being selected for simulation: the annotated voltage should equal the
resistance specified on the component.

You do not always need to create a custom symbol for each design kit component.
Sometimes you can use a built-in ADS symbol. In this case, the item definition in
mykit_res.ael uses the built-in ADS resistor symbol SYM_R.

The file or code fragments listed here can be added to the design kit created in the
tutorial. These files are also included with the ADS software in the
$HPEESOF_DIR/examples/DesignKit/bjt_dc_prj/design_kit directory. It is highly
recommended that you copy the file mykit_res.ael from this location since copying it
from the text in the documentation is highly prone to introducing errors due to
wrapping of text.

The files to modify or add to the design kit are listed below. Refer to the tutorial for
the actual steps for updating the sample kit.

The steps below provide a general outline of the process.

1. Copy the new item definition for the resistor from the file mykit_res.ael in the
$HPEESOF_DIR/examples/DesignKit/bjt_dc_prj/design_kit directory. This file
is shown on the following pages.

/*--+/

circuit/ael/mykit_res.ael - save the new item definition

circuit/bitmaps - add the new bitmaps mykit_res.bmp

circuit/models/mykit_models.net - add the new model

de/ael/boot.ael - add code to load AEL file mykit_res.ael

de/ael/palette.ael - add new component to the palette

optional:

circuit/records/mykit.rec - add new component for the library
browser

circuit/records/mykit.list - add new item definition file
mykit_res.ael for hpedlibgen

circuit/records/mykit.idf - recompile to add new component for
demand loading
Building the Basic Design Kit Parts 3-37

ADS Design Kit Tutorial
 FILE : mykit_res.ael
 COMMENTS : Component definition :
 [global variables]
 [forms and formsets]
 [netlist callback function]
 [parameter callback functions]
 item definition
/+--*/
/*--- utility function to check parameter value with respect to ranges ---*/
defun parm_checkRange
(
 name,
 actual,
 min,
 max,
 unitString
)
{
 // check within some relative margin to compensate for round-off error.

 decl scale;

 if (is_string(unitString) && strlen(unitString) > 0)
 scale = evaluate(sprintf("1 %s", unitString));
 else
 {
 scale = 1;
 unitString = "";
 }

 if (max > 0.0 && (actual-max)/max > 1.e-5)
 {
 warning("aelcmd", 16, "", fmt_tokens(list("The maximum", name,

"is", max/scale, unitString, "."))
);
 }
 else if (min > 0.0 && (min-actual)/min > 1.e-5)
 {
 warning("aelcmd", 16, "", fmt_tokens(list("The minimum", name,

"is", min/scale, unitString, "."))
);
 }
 return;
}
/*--- global variables ---*/
decl res_type_default = "form_res_type_myres1";
decl res_length_default = 3.0e-6;
decl res_width_default = 5.0e-6;
3-38 Building the Basic Design Kit Parts

decl res_height_default = 5.0e-6;

// typ model parameters: list(typeLabel, list(rho), ...
decl res_modelList = list("my resistor 1 (length >= 2.0um)",
 list(12.5e-3),
 "my resistor 2 (length >= 1.0um)",
 list(8.5e-3)
);

// Width ranges: list(typeLabel, list(lmin, lmax), ...)
decl res_ranges = list("my resistor 1 (length >= 2.0um)",
 list(2.0e-6, 0.0),
 "my resistor 2 (length >= 1.0um)",
 list(1.0e-6, 0.0)
);

/*--- forms and formsets ---*/
// Type
create_constant_form("form_res_type_myres1",
 "my resistor 1 (length >= 2.0um)", 0, "myres1",
"my_resistor1");
create_constant_form("form_res_type_myres2",
 "my resistor 2 (length >= 1.0um)", 0, "myres2",
"my_resistor2");

create_form_set("formset_res_type","form_res_type_myres1",
"form_res_type_myres2");

/*--- netlist callback function --*/

/*--- default value parameter callback function --------------------------*/
defun res_parm_defaultValue_cb
(
 cbP,
 parmName,
 parmDefP
)
{
 decl parmH = NULL;

/*--- calculate default parameter value ---------------------------------*/
 if (!strcmp(parmName, "Type"))
 {
 parmH = prm(res_type_default);
 }
 else if (!strcmp(parmName, "length"))
 {
 parmH = prm("StdForm", sprintf("%g um", res_length_default/1.0e-6));
Building the Basic Design Kit Parts 3-39

ADS Design Kit Tutorial
 }
 else if (!strcmp(parmName, "width"))
 {
 parmH = prm("StdForm", sprintf("%g um", res_width_default/1.0e-6));
 }
 else if (!strcmp(parmName, "height"))
 {
 parmH = prm("StdForm", sprintf("%g um", res_height_default/1.0e-6));
 }
 else if (!strcmp(parmName, "R"))
 {
 decl formDefP = dm_find_form_definition(res_type_default);
 decl formLabel = dm_get_form_definition_attribute(formDefP,
DM_FORM_LABEL);

 decl modelList = car(cdr(member(formLabel, res_modelList)));
 decl Rho = nth(0, modelList);

decl R = Rho*res_length_default / res_width_default / res_height_default;

 R = round(R*1.0e2)*1.0e-2; // round to 0.01 Ohm
 parmH = prm("StdForm", sprintf("%g Ohm", R));
 }

/*--- return to calling function --*/
 return parmH;
}

/*--- modified value parameter callback function -------------------------*/
defun res_parm_modified_cb
(
 cbP, // callback function pointer
 parmName, // clientData
 itemInfoP // itemInfo pointer
)
{
decl parmList = NULL;
 decl type, modelList, rangeList;
 decl Rho;
 decl L, W, H, R;

/*--- calculate dependent parameter values ------------------------------*/
 type = pcb_get_form_value(itemInfoP, "Type");
 modelList = car(cdr(member(type, res_modelList)));
 rangeList = car(cdr(member(type, res_ranges)));
 if (listlen(modelList) == 1)
 {
3-40 Building the Basic Design Kit Parts

 Rho = nth(0, modelList);

 if (!strcmp(parmName, "length") || !strcmp(parmName, "width")
 || !strcmp(parmName, "height") || !strcmp(parmName,
"Type"))
 {
 // get mks value of independent parameter(s)
 L = pcb_get_mks(itemInfoP, "length");
 W = pcb_get_mks(itemInfoP, "width");
 H = pcb_get_mks(itemInfoP, "height");
 parm_checkRange("resistor length", L, nth(0, rangeList),
nth(1, rangeList), "um");

 R = Rho * L / W / H;
 R = round(R*1.0e2)*1.0e-2; // round to 0.01 Ohm

 // build return structure with dependent parameter(s)
 parmList = pcb_set_mks(parmList, "R", R);
 }
 else if (!strcmp(parmName, "R"))
 {
 // get mks value of independent parameter(s)
 R = pcb_get_mks(itemInfoP, "R");
 W = pcb_get_mks(itemInfoP, "width");
 H = pcb_get_mks(itemInfoP, "height");

 // calculate dependent parameter(s)
 L = R / Rho * W * H;
 L = round(L*1.0e8)*1.0e-8; // round to 0.01 um
 parm_checkRange("resistor length", L,

nth(0, rangeList), nth(1, rangeList), "um");

 // build return structure with dependent parameter(s)
 parmList = pcb_set_mks(parmList, "length", L);
 }
 }

/*--- return to calling function --*/
 return parmList;
}

/*--- item definition --*/
create_item(
 "mykit_res", // name
 "An ideal resistor", // description label
 "R", // prefix
 0, // attributes
Building the Basic Design Kit Parts 3-41

ADS Design Kit Tutorial
 NULL, // priority
 "MY_RES", // iconName
standard_dialog, // dialogName
 NULL, // dialogData
 "%0b'%p'%1e:%t %# %44?0%:%31?%C%:_net%c%;%;%e %1b%r%8?%29?%:%30?%p
%:%k%?[%1i]%;=%p %;%;%;%e%e",
// CmpModelNetlistFmt, // netlist format string
 NULL, // netlist data
 ComponentAnnotFmt, // display format string
 "SYM_R", // symbol name
 no_artwork, // artwork type
 NULL, // artwork data
 ITEM_PRIMITIVE_EX // extra attributes
 ,create_parm(// parameter
 "Type", // name
 "Resistor type", // label
 PARM_DISCRETE_VALUE, // attrib
 "formset_res_type", // formSet
 UNITLESS_UNIT, // unit code
 prm(res_type_default) // default value
 ,list(dm_create_cb(PARM_DEFAULT_VALUE_CB, // parameter default value
 // callback function
 "res_parm_defaultValue_cb", // function name
 "Type", // clientData
 TRUE), // callback enableFlag
dm_create_cb(PARM_MODIFIED_CB, // parameter modified value
 // callback function
 "res_parm_modified_cb", // function name
 "Type", // clientData
 TRUE) // parameter modified value
 // callback function
)
)
 ,create_parm(// parameter
 "length", // name
 "length, R=f(length, width, height)", // label
 PARM_OPTIMIZABLE|PARM_STATISTICAL, // attrib
 "StdFileFormSet", // formSet
 LENGTH_UNIT, // unit code
 prm("StdForm", "3 um") // default value
 ,list(dm_create_cb(PARM_DEFAULT_VALUE_CB, // parameter default value
 // callback function
 "res_parm_defaultValue_cb", // function name
 "length", // clientData
 TRUE), // callback enableFlag

dm_create_cb(PARM_MODIFIED_CB, // parameter modified value
 // callback function
 "res_parm_modified_cb", // function name
3-42 Building the Basic Design Kit Parts

"length", // clientData
TRUE) // parameter modified value

 // callback function
)
)
 ,create_parm(// parameter
 "width", // name
 "width, R=f(length,width,height)", // label
 PARM_OPTIMIZABLE|PARM_STATISTICAL, // attrib
 "StdFileFormSet", // formSet
 LENGTH_UNIT, // unit code
 prm("StdForm", "5 um") // default value
 ,list(dm_create_cb(PARM_DEFAULT_VALUE_CB, // parameter default value
 // callback function
 "res_parm_defaultValue_cb", // function name
 "width", // clientData
 TRUE), // callback enableFlag
 dm_create_cb(PARM_MODIFIED_CB, // parameter modified

// value callback function
 "res_parm_modified_cb", // function name
 "width", // clientData
 TRUE) // parameter modified

// value callback function
)
)
 ,create_parm(// parameter
 "height", // name
 "height, R=f(length, width, height)", // label
 PARM_OPTIMIZABLE|PARM_STATISTICAL, // attrib
 "StdFileFormSet", // formSet
 LENGTH_UNIT, // unit code
 prm("StdForm", "5 um") // default value
 ,list(dm_create_cb(PARM_DEFAULT_VALUE_CB, // parameter default

// value callback function
 "res_parm_defaultValue_cb", // function name
 "height", // clientData
 TRUE), // callback enableFlag
 dm_create_cb(PARM_MODIFIED_CB, // parameter modified

// value callback function
 "res_parm_modified_cb", // function name
 "height", // clientData
 TRUE) // parameter modified

// value callback function
)
)
 ,create_parm(// parameter
)
)
Building the Basic Design Kit Parts 3-43

ADS Design Kit Tutorial
 ,create_parm(// parameter
 "R", // name
 "R, length=f(R, width, height)", // label
 PARM_REAL|PARM_NOT_NETLISTED, // attrib
 "StdFileFormSet", // formSet
 RESISTANCE_UNIT, // unit code
 prm("StdForm", "") // default value
 ,list(dm_create_cb(PARM_DEFAULT_VALUE_CB, // parameter default

// value callback function
 "res_parm_defaultValue_cb", // function name
 "R", // clientData
 TRUE), // callback enableFlag
 dm_create_cb(PARM_MODIFIED_CB, // parameter modified

// value callback function
 "res_parm_modified_cb", // function name
 "R", // clientData
 TRUE) // parameter modified

// value callback function
)
)
);

2. Add the new bitmaps (see Figure 3-9) to the pc and unix subdirectories.

Figure 3-9. mykit_res.bmp

3. Add the new model to the model file as shown in Table 3-15.
3-44 Building the Basic Design Kit Parts

4. In my_design_kit/de/ael/boot.ael, add the code to load the AEL file
mykit_res.ael.

load(strcat(MYKIT_CIRCUIT_AEL_DIR, "mykit_res"), "CmdOp");

5. Add the new component to the palette.ael file as shown in Table 3-16.

Table 3-15. my_design_kit/circuit/models/mykit_models.net

; subckt models for resistor with SDD

define myres1 (n1 n2)
parameters length= width= height=

l=length
w=width
h=height
rho=12.5e-3

reff=rho*l/h/w
vn=sqrt(4*boltzmann*(273+temp)*reff)
V_Source:vn n1 _net1 V_Noise=vn SaveCurrent=0

SDD:r1 _net1 n2 n2 n1 I[2,0]=0 I[1,0]=(_v1)/(rho*l/h/w)
end myres1

define myres2 (n1 n2)
parameters length= width= height=

l=length
w=width
h=height
rho=8.5e-3

reff=rho*l/h/w
vn=sqrt(4*boltzmann*(273+temp)*reff)
V_Source:vn n1 _net1 V_Noise=vn SaveCurrent=0

SDD:r1 _net1 n2 n2 n1 I[2,0]=0 I[1,0]=(_v1)/(rho*l/h/w)
end myres2
Building the Basic Design Kit Parts 3-45

ADS Design Kit Tutorial
6. Add the new component to the circuit records files as shown in Table 3-17.

7. Add mykit_res.ael to the temporary file mykit.list. Rerun hpedlibgen to
recompile the item definition file to add the new components.

hpedlibgen -list mykit.list -out mykit.idf

8. Since you can re-use the same symbols, there is no need to change the
circuit/symbols.

Accessing the Supplied Sample Kit
A copy of the completed tutorial design kit is available with the ADS design kit
software. This can be used to compare the files as you build them in the tutorial.
However, since the tutorial builds the files slowly, it is recommended that you go
through the process as described in the tutorial.

The sample design kit is located in:

$HPEESOF_DIR/examples/DesignKit/bjt_dc_prj/design_kit

Table 3-16. my_design_kit/de/ael/palette.ael

de_define_palette_group(SCHEM_WIN, "analogRF_net", "MYKIT
Components",
 "MYKIT Components", 0,
 "mykit_npn", "MYKIT NPN Bipolar Transistor",
 strcat(MYKIT_BITMAP_DIR,"mykit_npn"),
 "mykit_res", "MYKIT Resistor with SDD",
 strcat(MYKIT_BITMAP_DIR,"mykit_res"),
 "mykit_include", "MYKIT Netlist Include",
 strcat(MYKIT_BITMAP_DIR,"mykit_include"));

library_group("MYKIT", "MYKIT Components", "mykit_npn", "mykit_res",
"mykit_include");

Table 3-17. my_design_kit/circuit/records/mykit_res.rec

<COMPONENT>
 <NAME>mykit_res</NAME>
 <DESCRIPTION>MYKIT Resistor with SDD</DESCRIPTION>
 <LIBRARY>MYKIT</LIBRARY>
 <PLACEMENT>NOLAYOUT</PLACEMENT>
</COMPONENT>
3-46 Accessing the Supplied Sample Kit

Chapter 4: Basic Parts of an ADS Design Kit
This chapter details the basic parts of an ADS design kit. Chapter 3, ADS Design Kit
Tutorial guided you step by step through building a design kit with each of the parts
described in this chapter. As described in Chapter 2, Understanding the ADS Design
Kit File Structure, the basic parts of a design kit are those that define the
components, the simulation data, as well as a simple file to identify the design kit to
ADS, and the AEL files required to load the design kit.

As you build your design kit, keep in mind that if your kit includes translated models,
verification of the translated models is an essential part of design kit creation and
may take more time than building the kit itself. For more information on the
verification process, refer to “Verifying a Design Kit” on page 5-1.

Design Kit Name
Each design kit must have a unique name and the name cannot include spaces. Since
an ADS user may have multiple design kits loaded, from different sources, the design
kit name should be informative. It should contain the name of the company or
foundry as well as the name and/or version of the process.

The name of the design kit is only used in a couple places. It is the name of the
directory that all the other subdirectories are stored under, as illustrated in
“Understanding the Directory Contents” on page 2-8. The design kit name is entered
into the template ads.lib file and from there it becomes a global AEL variable whose
value is set to the path to the design kit. The name is also visible in the dialogs for
end users. These dialogs are used to load and set up the design kits that are
accessible in ADS. For more information on the user interface, refer to the ADS
“Design Kit User’s Guide”.

A design kit name may also be shown on the component palette, if a palette is
provided, but this is not an automatic correlation. The palette title is set in a
different location than the design kit name. A design kit may contain multiple
palettes. Each palette should contain the name of the design kit in addition to
whatever other information is appropriate and palette titles can have spaces in them.
The palette is the location where the user will most often see the name of the design
kit because the palette is visible at all times in the schematic window. The list of
default system palettes, plus the example palette from the design kit tutorial, are
shown in Figure 4-1.
Design Kit Name 4-1

Basic Parts of an ADS Design Kit
Figure 4-1. Design Kit Tutorial Palette Name

Components in a Design Kit
Defining a component in ADS requires entries in a number of files. Information must
be provided to control the behavior of the component when used in a schematic or
layout or when processed by the simulator. The component definition AEL file
contains much of this information.

Components can be presented to the user in an ADS Schematic window palette or in
the library browser or both. Symbols are required for both of these methods. Bitmaps
are only required for the component palette. Additionally, you can set your design kit
components up to be loaded on demand. For kits with large numbers of components,
this reduces the impact on ADS startup time.

The items that must be defined for each component in a design kit are explained in
the following sections:

• “Component Name” on page 4-2

• “Item Definition” on page 4-4

• “Schematic Symbol” on page 4-12

• “Component Palette vs. Library Browser” on page 4-15

Component Name

Component names are a unique identifier of each component loaded in ADS at any
given time. The name is visible in the balloon that is displayed when you hold your
4-2 Components in a Design Kit

cursor over a palette tile. It is also visible on the ADS schematic after you have placed
your component. Eventually, the component name is passed to the simulator in the
netlist.

Since the component name is a unique identifier, each component name must be
completely unique in the ADS system, not just within a library. If another design kit
uses the same name, the one that is loaded last will overwrite any that were loaded
before it.

You can test a new component name by entering it in the Component History field as
shown in Figure 4-2. The system is case-sensitive so names must be capitalized
exactly as shown.

Figure 4-2. ADS Component History

If you receive the error Failed to locate the component definition after entering your
new component name, this is an indication that the name is not currently being used
in ADS. To ensure that your component names are completely unique, you should
prefix each component name with an identifier which links it back to the design kit.
For example, the name of an RFIC foundry component would include:

• The name of the foundry

• The specific foundry process

• The common device type identifier

Separate the words in your component name with an underscore to make it more
readable.

Component History
Drop-down List
Components in a Design Kit 4-3

Basic Parts of an ADS Design Kit
Example:

<foundry>_<process>_<device type>

Another advantage of prefixing each component with a string such as the design kit
name is that sometimes a design that was built with design kit components will get
sent to someone who does not have that particular design kit loaded. In this case,
when the design is opened, a generic message indicating that the component was not
found is all that the user would see. Then, when they look at the schematic, there will
be a skeletal symbol with only pins and the component name. Seeing the component
name will help them determine the library that the component came from.

Note A component name in ADS cannot contain spaces.

Using Valid ADS Characters

The legal character set for Advanced Design System names is; alphanumeric _+ - = ^
’ @ # & $ %. Note that other than alphanumeric and underscore characters, all other
legal characters require special handling in ADS. It is highly recommended that you
use only alphanumeric and underscore characters in any part of your design kit.

Reserved Words

There is also a list of reserved words in ADS which cannot be used for component
names. For more information on reserved words in ADS, refer to the section on
“Reserved Words” in “Appendix E” of the “RFIC Dynamic Link Library Guide”.

Item Definition

All components that exist in ADS are added by calling an AEL function called
create_item() . Each component can have a number of parameters, which are added to
the system by calls to the function create_parm() . The combination of these calls is
referred to as the item definition. A user interface is provided to set up some of this
information, but it also usually requires some additional manual editing. The tutorial
gave an example of this process.

In addition to parameters and their default values, the item definition in ADS
contains information about a component that is necessary for display on the
schematic. There is also information included that is needed for simulation. The
following section describes the syntax and the arguments of the create_item() function
4-4 Components in a Design Kit

that are important for design kits. Additional information on the create_item()
command is available in Chapter 15 of the “AEL” documentation.

The syntax for the create_item() command is shown here. The square brackets
indicate optional parameters, but are not entered in the actual function call.

create_item(name, desc, prefix, attrib, priority, iconName, dialogCode,
 dialogData, netlistFormat, netlistData, displayFormat,
 symbolName,artworkType, artworkData [, extraAttribute, cbList,
 parameterN]);

An example similar to that in the tutorial is repeated here for reference. The callback
and create_parm() information is incomplete but is sufficient for demonstration
purposes. The parameter descriptions are included in Table 4-1.

create_item("mykit_npn", "MYKIT Nonlinear Bipolar Transistor", "BJT", NULL,
 NULL, NULL, standard_dialog, CmpModelNetlistFmt,
 ComponentAnnotFmt, SYM_mykit_npn, no_artwork, NULL,
 ITEM_PRIMITIVE_EX, list(callback1, callback2, etc),
 create_parm("parm1",...), create_parm("parm2",...));

Table 4-1. The create_item() Parameter Descriptions

Argument Description

name Name of the component. It must be completely unique in the system. For design
kits, it should include a company and/or process reference.

desc Description of the component. 80 character limit. This shows up in the edit
component dialog as well as in the balloon help when the cursor is positioned over
the component in the palette.

prefix The prefix is typically 1-3 characters but can be longer. It is used to create a
unique ID when the component is placed in a schematic.

attrib This is a special attribute code. The AEL manual contains a list of codes in Table
15-1. Each code has a numerical value assigned to it. Use of these codes is
explained below. A value of 0 or NULL indicates that no special codes are set.

priority Not used for design kit components - set it to NULL.

iconName Not used for design kit components - set it to NULL.

dialogCode This tells the system which dialog to open for editing of parameters and other
component attributes. It is usually set to standard_dialog, which is a constant
value. A constant value is a special value that the system knows about. It is not a
string. Do not put it in quotes.

dialogData Not used for design kit components - set it to "".
Components in a Design Kit 4-5

Basic Parts of an ADS Design Kit
netlistFormat This tells the system what format to use when the component is output to a netlist.
Two constant values are defined that should be sufficient for most design kit
components. These are not strings so do not put them in quotes. These netlist
format values are:

ComponentNetlistFmt - output all parameters as name=value. Use if component
has no model reference.

CmpModelNetlistFmt - output first parameter as Model=value and all others as
name=value. Use if component has a model reference, which must be the first
parameter.

Other pre-defined formats can be seen in the file

circuit/ael/gemini.ael in the ADS installation. If the pre-defined formats are not
sufficient, the netlistFormat can be customized by use of a special notation
described in "Format Strings" in the AEL manual. Since this is a complex topic, it
is beyond the scope of this manual to provide comprehensive coverage of it.

netlistData Not used for design kit components - set it to "".

displayFormat This tells the system how to display the component annotation on the schematic.
Component annotation consists of the component name and unique ID. For
design kit components, use the value ComponentAnnotFmt. This is a constant
known to the system, not a string. Do not put quotes around it.

symbolName This is the name of the symbol that was created for the component. It is the name
of the design file containing the symbol graphics, without the .dsn extension.

artworkType This tells the system what type of artwork is associated with the component. The
following values are used. The equivalent constant value in parentheses can also
be used.

0 = no artwork (no_artwork)

1 = fixed artwork. Artwork that is not dependent on physical parameters and is
stored in a .dsn file. (fixed_artwork)

2 = ael generated artwork. Artwork that is dependent on varying physical
parameters and must be generated by running an AEL macro. (macro_artwork)

3 = synchronized. Used for a subnetwork. The artwork geometry is contained in
the same design file as the schematic information.

Table 4-1. The create_item() Parameter Descriptions

Argument Description
4-6 Components in a Design Kit

How to Use Attribute Codes

There are two arguments in the create_item() function that contain attribute codes. In
the syntax example above, one is called attrib and the other is called extraAttribute.
Each attribute is actually a combination of a number of individual attribute codes,
added together. To determine the value to set in the call to create_item() , add the
numerical equivalent of all desired codes. An example is shown below with the few
codes that might be used in design kit components.

For a more complete list of the commonly used attribute codes, refer to the “AEL”
manual and use the codes and values from Table 15-1 in the “AEL” manual to set the
attrib argument. Use Table 15-2 in the “AEL” manual to set the extraAttribute
argument. These are stored in separate arguments because the size of the number
that can be stored in memory is limited and would be exceeded if the codes from both
attributes were stored in one location. Do not mix values from the different tables.

Attribute Code Examples

For the attrib argument, the attribute code most applicable to design kit components
is the code called ITEM_UNIQUE. This is used for the process include component
and it means that only one instance of this component can be placed in a schematic
page.

artworkData If artworkType = 0 or 3, set this to NULL.

If artworkType = 1, this string is set to the name of the design file containing the
artwork.

If artworkType = 2, this string is set to the name of the AEL function that will be
executed to draw the artwork.

extraAttribute This is another attribute code. The AEL manual contains a list of these codes in
Table 15-2. Each code has a numerical value assigned to it. Use of these codes is
explained below. A value of 0 or NULL indicates that no special codes are set.

cbList List of netlist callbacks. See Chapter 6, Netlist Callbacks for details.

parameterN All parameters of the component, each defined by a separate call to
create_parm(). These are not presented in the AEL list() syntax like the callbacks
are. Instead they are just listed one after the other, separated by a comma, as if
they were regular arguments. See table below for details on the create_parm()
function.

Table 4-1. The create_item() Parameter Descriptions

Argument Description
Components in a Design Kit 4-7

Basic Parts of an ADS Design Kit
From Table 15-1 in the “AEL” manual, the numerical value of that code is 8.
Therefore, the create_item() function call for a process include component will have
the value 8 for the attrib argument. For better documented code, you might choose to
use the more descriptive code and set the value to ITEM_UNIQUE, from the first
column in Table 15-1 in the “AEL” manual.

Another code that could be used for process include components is called
ITEM_NOT_NETLIST_IF_SUB. This is not listed in the AEL document. It means
that if the item is placed in a subcircuit, do not netlist it. In other words, only output
it to the netlist if it is placed in the top level of the circuit. This will prevent nested
subcircuits which the simulator does not support. See “Using a Subcircuit Model” on
page 3-31 for how to avoid nested subcircuits. It also prevent multiple instances from
being written to the netlist. ITEM_UNIQUE only ensures that multiple instances are
not placed in one schematic page. It does not check other levels of hierarchy.

The decimal value of ITEM_NOT_NETLIST_IF_SUB is 33554432. This can be tested
by entering fputs(stderr, ITEM_NOT_NETLIST_IF_SUB); in the ADS command line
dialog, which is accessible from the ADS main window. To combine these two codes,
you can add the two values and set the attrib argument to 33554440.

For better documented code, you can enter the following:

ITEM_UNIQUE | ITEM_NOT_NETLIST_IF_SUB

This can also be tested in the command line by entering the following:

fputs(stderr, ITEM_UNIQUE | ITEM_NOT_NETLIST_IF_SUB);

For information on how to view the output, refer to “Viewing Debug Output” on
page 3-7.

Note At this point it is necessary to mention that these descriptive codes are
actually hexadecimal codes inside the program (0x010 and 0x02000000, respectively).
This is why they must be combined with the '|' symbol (OR) when the code name is
used and not the decimal equivalent. It is beyond the scope of this document to teach
hexadecimal arithmetic. Just remember that you must use the OR symbol if you are
using the descriptive codes. Only add the numbers together if you are using the
decimal equivalents.

All other design kit components should not need any of the attributes from table 15-1
in the “AEL” manual, so the value 0 or NULL or ITEM_NORMAL should be set.
ITEM_NORMAL is not shown in the AEL manual.
4-8 Components in a Design Kit

For the extraAttribute argument, set ITEM_PRIMITIVE_EX to indicate to the
simulator that the component is a native component in the simulator.
ITEM_CKT_MODEL_EX would be set for a user-compiled model for Analog/RF.
ITEM_SP_MODEL_EX indicates a user-compiled model for DSP. Other common
codes for the extraAttribute argument are given in Table 15-2 in the “AEL” manual.

Parameter Definition

This section describes the syntax and arguments for the create_parm() function,
which is used as an argument in the create_item() function, described above. More
information is included in Chapter 15 of the “AEL” manual.

The syntax for the create_parm() command is shown here. The square brackets
indicate optional parameters, but are not entered in the actual function call.

create_parm(name, desc, attrib, formSet, unitCode, defaultValue
[,cbList]);

An example similar to that in the tutorial is repeated here for reference. The callback
information is incomplete but is sufficient for demonstration purposes. The
parameter descriptions are included in Table 4-2.

create_parm("Model", "Model Instance Name", 0, "StdFileFormSet", -1,
 prm("StdForm", "BJTM1"),
 list(callback1, callback2, etc));

Table 4-2. The create_parm() Parameter Descriptions

Argument Description

name Name of the parameter.

desc Description of the parameter. This text is seen by the user in the edit parameter
dialog when placing a component or modifying its parameter values.
Components in a Design Kit 4-9

Basic Parts of an ADS Design Kit
attrib Special attribute code. See "How to Use Attribute Codes" above. The list of
commonly used parameter attributes is given in the AEL manual in the
create_parm() section. Design kit components usually do not need a special
attribute code. Set the value to 0.

Notes:

The code for PARM_NOT_ON_SCREEN_EDITABLE may be used in conjunction
with formsets. This will prevent the user from typing in a value that is not in the
preset list, but it will also prevent the user from using the up/down arrows to scroll
through the values on-screen.

If you are defining dependent parameters, as discussed in Parameter Callbacks in
Chapter 6, do not use the PARM_NOT_EDITED attribute code. This will prevent the
user from editing the parameter, but it will also prevent any AEL callback code from
being able to edit the parameter.

formSet Forms are used as a way to present the user with a list of values. A parameter value
is then limited to those defined in a form set. List the name of the form set here. See
Forms and Formsets in Chapter 4 of this manual, or Chapter 15 of the AEL manual.

unitCode The following is the list of unit types for ADS components.

STRING_UNIT = -2
UNITLESS_UNIT = -1
FREQUENCY_UNIT = 0
RESISTANCE_UNIT = 1
CONDUCTANCE_UNIT = 2
INDUCTANCE_UNIT = 3
CAPACITANCE_UNIT = 4
LENGTH_UNIT = 5
TIME_UNIT = 6
ANGLE_UNIT = 7
POWER_UNIT = 8
VOLTAGE_UNIT = 9
CURRENT_UNIT = 10
DISTANCE_UNIT = 11
TEMPERATURE_UNIT = 12
DB_GAIN_UNIT = 13

defaultValue defaultValue is optional. If specified, it needs to be in the form of a value returned
from the prm() function. The prm() function generates an acceptable default value
for parameters with different form sets. If a formset is not set for the parameter, use
"StdForm" as in the example prm("StdForm", "BJTM1");.

cbList List of parameter callbacks. See Chapter 6, Parameter Callbacks for details.

Table 4-2. The create_parm() Parameter Descriptions

Argument Description
4-10 Components in a Design Kit

Saving the Item Definition

As you learned in the “Adding Demand Loaded Components” on page 3-29, the AEL
file that contains the item definitions must follow a certain format. The only
restriction is that the create_item() call be the last function for each component. The
other code that is in the file will be global variables, forms and formsets, and netlist
and parameter callbacks. It is recommended that you always present the code in this
order. The file mykit_process.ael, which is shown in the “Design Kits for RFIC
Dynamic Link” on page A-1, is a good example of this format and can be used as a
template for development of item definition files. You also learned in the tutorial that
item definitions can be combined in one file or be kept separate with one component
per file. If you combine the components in one file, make sure that each section looks
like the template file and that the create_item() function call is always the last piece of
code per component in case you choose to create an IDF file for demand-loaded
libraries at some point, now or in the future.

Forms and Formsets

The file mykit_process.ael in “Example Process Component with Forms and Formsets”
on page 4-25 introduces an important topic not covered in the tutorial. It is the use of
forms and formsets. This is a method of making user-defined lists that can be
presented to the user when they are placing a component on the schematic. The
syntax for the function calls to create a formset and a constant form are both very
simple. Look at the code sample in “Example Process Component with Forms and
Formsets” on page 4-25 and the syntax listed below. More information is available in
Chapter 15 of the “AEL” manual. Other types of forms are available as well.

create_constant_form(name, desc, attribute, netlistFormat, displayFormat);

where:

name is a string representing the form name.

desc is a description of the form.

attribute is an integer, usually 0 for this type of form.

netlistFormat is the format string to netlist the parameter value as. This is
blank in the example in the appendix because there is a netlist callback that
sets the value. If there were no netlist callback, the string might be similar to
the displayFormat string which shows up on schematic.

displayFormat is the format string to display in a schematic.
Components in a Design Kit 4-11

Basic Parts of an ADS Design Kit
create_form_set(name, formName1, formName2,.... formNameN);

where:

name is the name of the form set. This is used by the create_parm() function.

formName is one or more form names, such as the "name" parameter in the
create_constant_form() function above.

Note that forms and formsets require the same treatment as all other AEL functions
and variables - their names must be unique in the whole ADS environment, including
all loaded design kits. So use the same method prescribed for all names in a design
kit - prefix them with the design kit, company and/or process name.

Schematic Symbol

When a component is selected from the Component Palette List or the Library
Browser, an instance of the component is attached to the cursor and an outline of the
component symbol is displayed as the mouse is dragged across the screen. When the
mouse is clicked in the schematic window, an instance of the symbol is drawn on the
screen. As a design kit creator, you must create the symbol graphics that are
displayed on the schematic.

Typical ADS symbols are one schematic inch wide from the left most pin to the right
most pin. The traditional location for pin 1 is on the left. If there is more than one pin
on the left side of the symbol, the upper most pin is usually pin 1. Pin 1 is also
typically defined as the origin, which is the point where the cursor is when then
symbol is dragged across the schematic page.

There are several ways to create a symbol for your design kit.

• “Drawing a New Symbol” on page 4-13 describes one way of creating a symbol
using the ADS Symbol Editor.

• “Copying an Existing Symbol” on page 4-15 is another way to create and modify
a built-in symbol or a symbol from another design kit or library.

• A third option is to use the IFF export tool from another system such as
Cadence DFII and then import the symbol into Advanced Design System. For
more information on IFF export and import, refer to the IFF translation
documentation for the product you are interested in. The available manuals are

• “Translating Cadence Schematics”

• “Translating Mentor Graphics Schematics and Layouts”
4-12 Components in a Design Kit

• “Translating Mentor Graphics Libraries”

Note It is possible that you will decide to use unmodified built-in ADS symbols in
your design kit. In this case, the symbols do not need to be copied to your design kit
circuit/symbols directory. You can simply reference the symbol by name in your
create_item() command. No definition is needed.

Drawing a New Symbol

To draw a new symbol for your design kit:

1. Choose File > Open Project to open a project with a new schematic window. For
more information on ADS projects, refer to “Managing Projects and Designs” in
Chapter 2 of the ADS “User’s Guide”.

2. Access the ADS Symbol Editor by choosing View > Create/Edit Schematic Symbol .
The Symbol Generator dialog box appears.

3. Close the Symbol Generator dialog and draw the symbol by hand. For more
information on creating symbols in ADS, refer to “Drawing a Custom Symbol”
Components in a Design Kit 4-13

Basic Parts of an ADS Design Kit
in Chapter 10 of the ADS “User’s Guide” and/or “ADS Schematic Symbol &
Bitmap Creation” in Chapter 9 of the “DesignGuide Developer Studio”
documentation.

Note Use of the Symbol Generator is not appropriate for design kit
development because the symbols that are automatically generated by the
system are just box-like symbols intended for representing a hierarchical
design in ADS. For design kits, you will want to create a more meaningful
symbol that properly represents the component for which it is a symbol.
4-14 Components in a Design Kit

Copying an Existing Symbol

To copy an existing symbol for your design kit,

1. Open a schematic window.

2. Choose File > Open Design to open the appropriate symbol file. You will find
built-in ADS symbols in the directory $HPEESOF_DIR/de/symbols and
$HPEESOF_DIR/circuit/symbols. $HPEESOF_DIR is the installation directory
for ADS. To copy symbol files from another design kit, browse to the
circuit/symbols directory of the design kit. Symbols are stored as .dsn files, also
known as design files. Once you have opened the design file, re-save it in the
current project directory as the component name.

Detailed steps on this process are provided in the tutorial in Chapter 3, ADS Design
Kit Tutorial. For more information on creating symbols in ADS, refer to “Drawing a
Custom Symbol” in Chapter 10 of the ADS “User’s Guide” and/or “ADS Schematic
Symbol & Bitmap Creation” in Chapter 9 of the “DesignGuide Developer Studio”
documentation.

Component Palette vs. Library Browser

You must decide if your design kit components will be accessed from the component
palette, the library browser, or both. You must also decide if your components will be
loaded only when used (demand-loaded), to save time at ADS startup, or if the parts
will be loaded into memory when the library is loaded.

For a design kit with a limited number of components, selecting a component from
the palette is quick because the palette is a permanent part of the schematic window
and there are pictures that enable quick identification of the components.

Finding a component on a palette is not efficient if the design kit has a large number
of components. In this case, use of the library browser is recommended. The
disadvantage is that the library browser resides in a separate window from the
schematic page. A distinct advantage is that the browser has search capabilities.
When defined with control files, the library browser has other advantages, listed
below.

There are two methods for defining components in the library browser. One is a
simple AEL function call (library_group()) that is usually used in conjunction with the
command to create the palette (de_define_palette_group()) or when the component is
created (create_item()). The other method uses library browser control and record files
to give more functionality, including the ability to group components in sub-libraries.
Components in a Design Kit 4-15

Basic Parts of an ADS Design Kit
Using library browser control and record files is required if components are to be
demand-loaded. A benefit of demand-loaded libraries is that you can ship the
platform independent binary item definition file (*.idf) with your design kit and avoid
shipping the .ael files, thus protecting your code from being modified by the end user.
Even if you do not use the .idf file, you can still remove .ael files before shipping your
design kit, leaving only the platform-independent compiled versions of those files (.atf
files). This is explained more in “Packaging for Distribution” on page 5-2.

The benefits of using the library browser with the control and record files are:

• It allows for a two-tier library presentation (library/sub-library).

• It allows for control over the order in which the components are presented.

• It allows access to additional fields in the library browser.

• It allows for selected components to appear in the library browser when a
schematic is open, but not when a layout is open, or vice-versa.

• It is a necessary condition for using demand-loaded components.

The functions mentioned above are defined in the sections below, and the Chapter 3,
ADS Design Kit Tutorial provides specific examples of each method.

Component Palette

To define a component palette, use a function call to the ADS function
de_define_palette_group() in a file called palette.ael. This file should be saved in the
de/ael directory of your design kit directory structure.

The syntax for this function call as defined in the AEL manual is:

de_define_palette_group(winType, dsnType, groupName, groupLabel, position,
item1name, item1label, item1bitmap name[, item2name, item2label,
item2bitmap name, ...]);

The square brackets indicate that the number of items in the palette is variable. The
group of three parameters, item1name, item1label, and item1bitmap, are a set and all
three have to be defined for each component in the palette. Do not include the bracket
in your AEL code. For more information on function syntax and usage, refer to
Chapter 15 of the “AEL” documentation.

The following values are used for this application:

winType = SCHEM_WIN

dsnType = "analogRF_net" or "sigproc_net"
4-16 Components in a Design Kit

groupName = name of palette

groupLabel = descriptive label for palette

position = position is an integer that indicates where the new palette is
added in the list of palettes:

-1 -alphabetically sort the list of palettes after adding the new
palette.

-2 - append the new palette at the end.

>0 - insert the new palette in the specified position in the list of
palettes.

item<n>name = name of component as registered in create_item() call

item<n>label = description of component

item<n>bitmap = path to bitmap for the palette button.

Important The bitmap name must not include the file name extension (.bmp) or it
will fail on some platforms. Also note that the second parameter in dsnType, used in
de_define_palette_group() , is a quoted string.

Bitmaps

The bitmap file referenced in the palette definition is a file located in the
circuit/bitmaps/pc or circuit/bitmaps/unix subdirectory of the design kit directory
structure. The bitmap is used to make the picture icon on the palette, to enable quick
selection of a component by visual identification. In addition to a picture, the bitmap
can contain a few short words to identify the component and the design kit to which it
belongs.

There are different ways to create a bitmap. Windows programs like Paint can be
used. The ADS "DesignGuide Developer Studio" can also be used and is recommended
as it gives access to sample bitmaps and is designed to create bitmaps specifically for
use in ADS. The DesignGuide Developer Studio is shipped with ADS and can be used
without a license; however, it is not installed by default.

Bitmaps should be created as 32x32 pixels and saved as 16 color bitmaps. If you
create your bitmaps on the PC, a unix version needs to be generated from the pc file.
The program $HPEESOF_DIR/hptolemy/bin.win32/bmptoxpm.exe can be used for
this purpose. The free-ware program XnView© can be used as well to save the X
windows (unix) version of a bmp file. If you use the DesignGuide Developer Studio,
you can save both formats directly from the bitmap editor.
Components in a Design Kit 4-17

Basic Parts of an ADS Design Kit
Note that the standard way to store bitmaps for an ADS design kit is to give the unix
and PC bitmaps identical names and store them in subdirectories called unix and pc,
under the circuit/bitmaps directory of the design kit. The .bmp extension can be used
for both. The DesignGuide Developer Studio bitmap tool has SaveAs commands for
both unix and pc. More information is included in Chapter 3, ADS Design Kit
Tutorial.

Note The bitmap name as listed in the call to de_define_palette_group() cannot
contain a filename extension such as .bmp. The bitmap file name can however include
the full path. The presence of a file extension will cause display of the bitmaps to fail
on some platforms.

Library Browser

Design kit components can be entered into the library browser in one of two ways.
The simplest way is with a function call to library_group() . An example of this is given
in the tutorial. It is a simple list of the components as defined in the item definition,
preceded by two arguments that identify the name and description of the library. The
syntax from the AEL manual is:

library_group(name, label, item1, item2, ..., itemN);

If the component palette has been defined as above in palette.ael, this command can
be added to that file, or it can be added to the boot.ael file defined in “Creating the
boot.ael File” on page 3-5.

The other way to define a library for the library browser is by setting up control and
record files in the circuit/records subdirectory of your design kit as defined in the next
section. This method provides the functionality listed in the section “Component
Palette vs. Library Browser” on page 4-15. All library control files (.ctl) in the
<design_kit_name>/circuit/records directory will be loaded automatically when the
library is activated. Record files will be called by the control file when they are
required. The control file defines the libraries and the record files list the components
in each library.
4-18 Components in a Design Kit

The Control File

The control file creates the two-tier presentation (library/sub library) in the library
browser. The control file uses the Extensible Markup Language (XML) format. The
syntax of the control file is shown below. All words and characters shown are required
tokens (except the dots). Dots indicate where the information is filled in for each
library.

<?xml version="1.0" ?>
<LIBRARIES>

<LIBRARY>

<NAME>...</NAME>
<CATEGORY>DL</CATEGORY>
<SUBLIBRARY>

<NAME>...</NAME>
<RECORD_FILES>...</RECORD_FILES>

</SUBLIBRARY>
<SUBLIBRARY>

<NAME>...</NAME>
<RECORD_FILES>...</RECORD_FILES>

</SUBLIBRARY>
<SUBLIBRARY>

<NAME>...</NAME>
<RECORD_FILES>...</RECORD_FILES>

</SUBLIBRARY>

</LIBRARY>

</LIBRARIES>

Sub libraries are optional but if not used, then the RECORD_FILES must be defined
for the library. Multiple record files can be specified on one line, separated by a space.
The following optional fields can be defined for each library or sub library.

<URL>...</URL>

Enter any appropriate web address where the user can find information on the
library or component.

<AVAILABILITY>...</AVAILABILITY>

Valid settings are Available, Obsolete and Not Available.
Components in a Design Kit 4-19

Basic Parts of an ADS Design Kit
The Record File

A record file lists all of the components in a sub library. Each record file must have
the extension .rec. The format for the record file is similar to that of the control file.

<?xml version="1.0" ?>
<COMPONENTS>

<COMPONENT>

<NAME>...</NAME>
<DESCRIPTION>...</DESCRIPTION>
<VENDOR>...</VENDOR>
<LIBRARY>...</LIBRARY>
<PLACEMENT>...</PLACEMENT>
<AVAILABILITY>...</AVAILABILITY>
<URL>...</URL>

</COMPONENT>

</COMPONENTS>

Multiple component sections can be defined between the beginning and ending
COMPONENTS tags.

Multiple record files can be specified on one line, separated by a space.

The PLACEMENT tag indicates where the component can be used. Valid settings are
Both, Layout, Noschematic and Nolayout. This line is optional and the default value
is Both.

The following optional fields can be defined for each library or sub library.

<URL>...</URL>

Enter any appropriate web address where the user can find information on the
library or component.

<AVAILABILITY>...</AVAILABILITY>

Valid settings are Available, Obsolete and Not Available.

Note The library/sub-library names used in the library control files do not have to
match the name of the design kit, as defined in ads.lib. For the library browser, they
can be more descriptive.

For more information on setting up library browser files for a design kit, refer to
“Adding Components to the Library Browser” on page 3-26.
4-20 Components in a Design Kit

Demand Loaded Components

As described above, ADS startup time can be reduced if components in a very large
library are not loaded until they are needed. This is called demand-loading. To
accomplish this, all the ael functions related to the component are stored in an Item
Definition File (.idf extension). This file is stored in the same directory as the control
and records files, the circuit/records subdirectory of the design kit directory.

The .idf file is created by a utility program that is shipped with ADS and is stored in
the bin directory under $HPEESOF_DIR, which is the installation directory of ADS.
$HPEESOF_DIR/bin must be in your path to use this utility, but it should already be
in your path if you are running ADS.

The syntax for running the program is

hpedlibgen -list <comp list file> -out <.idf file>

where <comp list file> is a simple text file listing each AEL file to be compiled. Each
AEL file name is listed, one per line.

The format of the AEL files that are included is important. Each component can
consist of a create_item() function call, as well as parameter or netlist callbacks and
other AEL functions. For this process, the create_item() call has to be the last AEL
function call for that component. In other words, the callbacks and all other
associated functions must come before the create_item() function. Since each block of
functions will only be loaded into ADS as needed, any common code such as a
reusable utility function, which is used by more than one component, must be stored
in an AEL file that is not compiled into the .idf file.

“Adding Demand Loaded Components” on page 3-29 includes an example of creating
the .idf file.

Model Files
Model files are one way to include simulation data in a design kit. Refer to Chapter 2,
Understanding the ADS Design Kit File Structure to determine what form your
simulation data will be in. Other methods for including simulation data are discussed
in Chapter 6, Additional Parts for ADS Design Kits. The Chapter 3, ADS Design Kit
Tutorial includes an example of using a model file, the most common method for
RFIC foundry kits.

Model files are typically translated from Hspice or Spectre formats. The ADS SPICE
or Spectre Netlist Translator can be used to perform these translations. After
Model Files 4-21

Basic Parts of an ADS Design Kit
translation, the ADS Model Verification Toolkit can be used to set up a suite of
verification tests, where the simulation results from both simulators are compared
and plotted against each other.

In the design kit structure, model files are stored in the circuit/models directory.
These model files contain process variables and model cards or subcircuit models in
netlist format which are referenced by the components in the schematic and need to
be available to the simulator.

To give the simulator access to these model files, a netlist include component or a
custom process component is placed in the schematic. The section on “Adding a
Netlist Include Component” on page 3-18 included an example of creating this type of
component. When this component is encountered during netlisting, a #include
statement is written into the netlist.

The #include statement is called a pre-processor statement. When the simulator
pre-processor reads the #include statement, it reads the referenced netlist file and
loads the process variables and models which are in the netlist file. Netlist Include
and custom process components as well as pre-processor statements are discussed in
depth in the following sections.

Another pre-processor statement commonly used in model files is the #define
statement, and the corresponding #ifdef and #endif statements. These are used to
define corner cases for process variations. Corner cases may also be referred to as
sections. In a model file, a section is started with a #ifdef statement and ended by a
matching #endif statement. A model file or set of model files will include a number of
sections with different process variables and model parameters. To enable a section, a
netlist must contain a #define statement before the #include statement. These
pre-processor statements are also covered in the next section.

Netlist Include or Process Component

As mentioned above, the best way to connect the model to the netlisted schematic
parts is through the use of a Process or Include component placed on the schematic.
This component does not have any connectivity information but can be used to specify
information such as corner cases, as well as the name of the model file to be used for
the simulation. A netlist callback on this component will generate a #include
statement in the output netlist. A netlist callback is an AEL function that is executed
during netlisting, the process of traversing a schematic and outputting a file for the
simulator. Netlist callbacks are addressed in “Netlist Callbacks” on page 6-14.
4-22 Model Files

Starting in ADS 2002, the Netlist Include component is available from the Data Items
palette. This component is mentioned here to give you an introduction into how the
include components work. You can use this while testing your model files, but for your
final design kit, it is recommended that you create a custom component to assist your
users in attaching the proper file. This was demonstrated in the tutorial in “Adding a
Netlist Include Component” on page 3-18.

To use the NetlistInclude component, click the component bitmap in the Data Items
palette and place it on the schematic. Alternatively, you can just type NetlistInclude
in the component history field on the schematic toolbar. Double-click the component
in the schematic to display the dialog box. The dialog that is used to enter the
parameters for the component is shown in Figure 4-3.

Figure 4-3. Netlist File Include Dialog

The NetlistInclude component as placed in a schematic is shown in Figure 4-4.
Model Files 4-23

Basic Parts of an ADS Design Kit
Figure 4-4. Netlist Include Component

Only one NetlistInclude component can be placed in a schematic. An error dialog will
appear if you attempt to place a second NetlistInclude component.

For this application, only one parameter on the component needs to be filled out. This
is the IncludeFiles parameter. In the NetlistInclude component dialog, select this
parameter with the cursor. On the right hand side of the dialog is a browser button.
To demonstrate how this works, use this browser to navigate to the mykit_models.net
file that you created in the tutorial. If you did not complete that part of the tutorial,
the file can be found in your ADS installation at
$HPEESOF_DIR/examples/DesignKit/bjt_dc_prj/design_kit. If you cannot find this
path, it is ok for this example to create an empty file called mykit_models.net.

When you have browsed to a model file and selected it, note that the IncludePath field
is automatically filled in for you. You can also manually type in a path or add more
paths to the existing one. Each directory can be listed in the same field, separated by
space.

Sometimes more than one model file will be included in a design kit. To add more files
to be included, select the IncludeFiles parameter again and click the Add button at
the bottom of the Select Parameter list box. A parameter called IncludeFiles[2] will
be added to the parameter list in the dialog.

The preceding section introduced the concept of a corner case. This is also sometimes
called a section. A model file will typically be divided up into multiple sections, each
representing a process variation that needs to be simulated. It is not possible in the
simulator today to automatically simulate all corners in batch mode, so they must be
specified individually on the include or process component for each simulation. In the
NetlistInclude component edit parameter dialog, type the word FAST into the Section
field on the right hand side of the dialog.
4-24 Model Files

In order to understand the whole picture, let us now create the netlist fragment that
will represent the information on this component. There is a short cut to creating the
netlist without actually invoking a simulation. Open the Command Line window
from the ADS Main window by selecting Options > Command Line . In the Command
field of the command line window type de_netlist(); . Enter the command using the
Enter key or click the Apply button to process the command. In a text editor, open the
netlist.log file in your project directory. It should look similar to the following:

#define FAST

#include "$HOME/my_design_kit/circuit/models/mykit_models.net"

#undef FAST

The commands that start with the # sign are all pre-processor commands. You can
see how the information from the edit parameter dialog gets used in the netlist file.
The specified corner case or section is turned on by a #define statement and the model
file gets referenced by a #include statement. It is a good practice to use #undef to turn
off the section after the file that uses it has been read.

A sample process component which uses forms and formsets to define corner cases by
writing #define statements to the netlist is include below. Pre-processor commands
will be described in more depth in the section following the sample process
component.

Example Process Component with Forms and Formsets

The following AEL code can be copied and modified to create your own custom process
component. Read the comments after the file for more information on how the file
works.

/*---+/

 FILE : mykit_process.ael

 COMMENTS : Component definition :

 [global variables]

 [forms and formsets]

 [netlist callback function]

 [parameter callback functions]

 item definition

/+---*/

/*--- global variables --*/

/*--- forms and formsets --*/
Model Files 4-25

Basic Parts of an ADS Design Kit
/*--- corner cases --*/

create_constant_form("mykit_form_process_best",

 "Best", 0, "", "Best");

create_constant_form("mykit_form_process_nominal",

 "Nominal", 0, "", "Nominal");

create_constant_form("mykit_form_process_worst",

 "Worst", 0, "", "Worst");

create_form_set("mykit_formset_process_corners",

 "mykit_form_process_best",

 "mykit_form_process_nominal",

 "mykit_form_process_worst");

/*--- netlist callback function--*/

defun mykit_process_netlist_cb

(

 cbP,

 cbData,

 instH

)

{

 decl netStrg;

 decl parmH, parmName, parmFormName;

 /*--- #ifdef --*/

 netStrg = "#ifndef MYKIT_PROCESS\n#define MYKIT_PROCESS\n";

 /*--- corner case/resistance --*/

 parmH = db_first_parm(instH);

 // this while loop isn’t necessary since there is only one parameter

 // but it is shown here as an example for the user

 while (parmH != NULL)

 {

 parmName = db_get_parm_attribute(parmH, PARM_NAME);

 if (parmName == "CornerCase")

{

 netStrg = strcat(netStrg, "; corners\n");

 parmFormName = db_get_parm_attribute(parmH, PARM_FORM_NAME);

 if (parmFormName == "mykit_form_process_best")
4-26 Model Files

 {

 netStrg = strcat(netStrg, "#define MYKIT_BEST_SECTION\n");

 }

 else if (parmFormName == "mykit_form_process_worst")

 {

 netStrg = strcat(netStrg, "#define MYKIT_WORST_SECTION\n");

 }

 else

 {

 netStrg = strcat(netStrg, "#define MYKIT_NOMINAL_SECTION\n");

 }

 }

 parmH = db_next_parm(parmH);

 }

/*--- device models ---*/

 netStrg = strcat(netStrg, "; models\n");

 netStrg = strcat(netStrg, sprintf("#include
'%s/circuit/models/mykit_models.n

et'\n",

 MYKIT_PATH));

 /*--- #ifdef --*/

 netStrg = strcat(netStrg, "#endif\n");

 /*--- return to calling function ------------------------------------*/

 return(netStrg);

}

/*--- item definition ---*/

create_item(

 "MYKIT_PROCESS", // name

 "Process Include", // description label

 "MYKIT_PROCESS", // prefix

 "Process Include", // description label

 "MYKIT_PROCESS", // prefix

 ITEM_UNIQUE, // attributes

 -1, // priority

 "MYKIT_PROCESS", // iconName

 standard_dialog, // dialogName
Model Files 4-27

Basic Parts of an ADS Design Kit
 NULL, // dialogData

 ComponentNetlistFmt, // netlist format string

 NULL, // netlist data

 ComponentAnnotFmt, // display format string

 "SYM_MYKIT_PROCESS", // symbol name

 no_artwork, // artwork type

 NULL, // artwork data

 ITEM_PRIMITIVE_EX // extra attributes

 ,list(dm_create_cb(ITEM_NETLIST_CB, "mykit_process_netlist_cb",

 "", TRUE)) // netlist callback

 ,create_parm(// parameter

 "CornerCase", // name

 "Corner case selection", // label

 PARM_DISCRETE_VALUE, // attrib

 "mykit_formset_process_corners", // formSet

 UNITLESS_UNIT, // unit code

prm("mykit_form_process_nominal") // default value

)

);

The process component shown here only has one parameter, for corner case selection.
The three corners are Best, Nominal and Worst. A form set and three constant forms
are used to define the list of possible values that are presented to the user when the
component is placed in the schematic window. The selected case is used to output the
proper #define statement in the netlist. This corresponds to a section of the model file,
which must be offset by a #ifdef /#endif block.

Table 4-3 is the skeleton of the models file and the netlist file that are produced by
the netlist callback mykit_process_netlist_cb() . Inside of the section of the model file
will be process parameters and the model with the parameters corresponding to the
nominal case. Similar sections will be defined in the model file for the best and worst
cases.
4-28 Model Files

Note that the model file in this example is hard coded as mykit_models.net. This
would be changed to represent the model file or files in your design kit. The global
variable MYKIT_PATH is a path variable that will have to be defined with AEL code.

The #include Pre-processor Command

To understand how pre-processor commands work, it is helpful to understand the
whole simulation process. When you click the Simulate menu pick, three things
happen.

• First, the schematic is traversed in a process called netlisting and a netlist file
is written in the project directory. This file is saved with the name netlist.log.

• Next the simulator pre-processor reads the netlist file. If any pre-processor
commands such as #include or #define are found, they are processed before the
netlist is passed to the simulator. So the simulator never actually sees the
#include statement. Instead, the contents of the file are read and passed to the
simulator. It is especially important to understand this with respect to the
#define statement and for the discussion of limitations of the pre-processor
commands.

• The final step is the actual simulation of the information that is now loaded into
the simulator.

Table 4-3. Model File Sample

model file mykit_models.net

#ifdef MYKIT_NOMINAL_SECTION
.
.
.
#endif

netlist file from schematic
.
.
.
#define MYKIT_NOMINAL_SECTION

#include "my_design_kit/circuit/models/mykit_models.net"
.
.
.

Model Files 4-29

Basic Parts of an ADS Design Kit
The #include statement is fairly easy to understand. A path and filename are
supplied and when that statement is read, the file is read and passed to the
simulator. The following list of limitations should be read and understood before you
continue.

• If the design kit user is attempting to do remote simulation or parallel
simulation, the included files need to be present on the remote machine in the
same location that they are on the local machine. This can be accomplished by
NFS mounting the disks, which will avoid potential problems caused by copying
files around, such as losing edits made in the remote location. If NFS mounting
is not possible, a netlist callback could be written that would read the
referenced file and output it directly into the netlist, instead of writing the
#include line into the netlist.

• If an included file has subcircuit models or subcircuits of any type (which start
with the command define), the process or include component that generates the
#include statement must be placed at the top level of the hierarchy in the
design. Nested defines are not allowed, and placing this type of component into
a lower level of hierarchy will result in a define statement within a subcircuit
definition. If an included file contains model cards and variables only, the file
can be included from any level of hierarchy.

• The name of an included file, as listed on a process or include component,
cannot be a variable reference.

• No tuning, sweeping, optimization or yield can be performed on the data in the
included file. Additionally, the information in an included file is not available for
back annotation on a schematic or other similar functions. This is an acceptable
limitation since this information can be thought of as read-only.

• The order of included files cannot be controlled if multiple separate include
components are placed. The component called NetlistInclude is designed to
enforce this restriction. Only one NetlistInclude component can be placed, but it
takes a list of files and retains the order of the files when outputting a #include
line to the netlist.

The #ifdef and #define Pre-processor Commands

As introduced above, #ifdef is used to define a corner case or section in a model file. A
section can contain process variables, model cards, subcircuit definitions or a
combination of these, to represent a process variation. Typical names for corner cases
4-30 Model Files

are FAST, NOMINAL and SLOW. A model file containing these sections would look
like this:

#ifdef NOMINAL

[process variables and model parameters for the NOMINAL case would be included
here]

#endif

#ifdef FAST

[the same process variables and model parameters would be included here, but with
different values to simulate the FAST process variations.]

#endif

#ifdef SLOW

[the same variables and models would be included here again, but with values to
simulate the SLOW process variations.]

#endif

Remember from above that the netlisted schematic that would include this model file
contains the lines shown below. Note that the sample mykit_models.net file does not
actually contain these sections at this time.

#define FAST

#include "C:/my_design_kit/circuit/models/mykit_models.net"

#undef FAST

The order in which all this information is processed is as follows:

1. Netlist file netlist.log is created from the schematic. The #define and #include
statements are generated from the include component.

2. The simulator pre-processor reads the netlist.log file. FAST is defined and the
include file mykit_models.net is read.

3. When the model file is read, the NOMINAL and SLOW sections are completely
disregarded. Only the FAST section is read.

It was mentioned above that corner cases cannot be swept automatically in the
simulator. This is because, based on what was shown in step #3 above, the simulator
only has knowledge of one corner section at a time. The others are filtered out by the
pre-processor. The user has to turn on each section individually and save the datasets
for comparison.
Model Files 4-31

Basic Parts of an ADS Design Kit
The last concept that needs to be explained is how to use a custom process include
component to make it easier for the design kit user to perform these simulations.
First of all, the netlist file name can be hard-coded into a custom component. In other
words, the user will not have to enter any file name. The path is known because the
model file exists in the circuit/models directory of the design kit and the file name is
written into the AEL code that generates the netlist. This AEL code is called a netlist
callback and is explained in “Netlist Callbacks” on page 6-14.

In order to make it easier for the customer to select which corner case to simulate, the
section names are presented to the user in a list, of which one at a time can be
selected. To generate this list, a form set is defined in AEL code and then referenced
in the item definition, also AEL code. Forms and formsets are defined in “Forms and
Formsets” on page 4-11. Item definitions are covered in “Item Definition” on page 4-4.
The best way to complete your understanding of these concepts is to return to the
Chapter 3, ADS Design Kit Tutorial, where two examples of custom process include
components are given.

Any custom process or include component, that is required by other components in a
design kit, should be listed at the top of the palette, since the user must place it in the
schematic when using any other components in the design kit. In fact, it is so
essential that this process component be included in a schematic, that some design
kit developers will add a netlist callback to any device component that refers to a
model in the netlist model file. This callback can traverse the schematic and warn the
user if a process component has not been placed, or it can simply place the process
component automatically.

Model Naming Limitations

As mentioned earlier, since ADS has one global name space, all components and
variables in a model file must be unique, to avoid colliding with another with the
same name if another file is included at the same time. This can happen, for example,
when designing a multi-chip module if components from more than one design kit are
used in the same design.

This requirement applies to model names, subcircuit names and global variable
names. Components or variables (parameters) inside of a subcircuit are considered
local and are protected automatically. <foundry>_<process>_<name> is the
recommended naming convention for all global items in an RFIC foundry design kit.
At the present time, the netlist translators do not facilitate this process, so it must be
done manually or with a script run on the model file after the translation is complete.
4-32 Model Files

The ads.lib Template
The ads.lib file is a design kit control file that tells Advanced Design System which
design kits to load. A template of this file must be included in the design_kit
subdirectory of the design kit directory structure. When a design kit is installed, a
copy of the records line of the template file is made and stored outside of the design
kit. The location of the file controls who has access to the design kit when ADS is
started, as described below.

The format for the records line of the ads.lib template file is a single line with 4 fields,
separated by vertical bars.

kitname | path to design kit | path to kit boot file | kit version

Table 4-4 provides a description for each of the fields shown.

To insert a comment into the template ads.lib file, begin the line with a pound sign
(#). Comments will not be copied with the records line.

Ultimately, ads.lib files can exist in the any of the locations listed in Table 4-5. Note
that these locations are referred to as levels in the ADS Design Kit user interface.

Table 4-4. The ads.lib Fields

kitname The ‘name of the design kit’. This is also a global variable available in
any custom design kit AEL code. The name of the variable is identical to
the name if the design kit as registered in the ads.lib file.

path to design kit In the template file, the second field is left blank or as shown in this
template. When a design kit is installed, the template is read, the path is
determined and a copy of the line entered in an ads.lib file somewhere
else on the system, where it can be referenced during future ADS
sessions at startup time to instruct the system which design kits to load.
The path is inserted in the copy but not back into the template.

path to boot file This is an optional value. If specified, it is the relative path from the top of
the design kit structure to an AEL file which has special instructions for
loading the design kit, and potentially other AEL files. More details on
the boot file are given in the next section of this chapter.

kit version This is the official location for recording the version of a design kit. It is a
string. Make sure you update it if you release a new version of the
design kit. Any changes to a design kit should trigger a new version
number to maintain the integrity of the complete set of files.
The ads.lib Template 4-33

Basic Parts of an ADS Design Kit
With this capability, a user in a networked environment can have access to a specific
design kit without exposing all engineers to it or without requiring the assistance of
an administrator with root permissions to install it. Another benefit is that a site
librarian can manage a set of libraries that are accessible to all engineers without
any effort from the engineers. These are some typical ways that a system is
configured.

Another way to use this multi-layered functionality is for an end user to have a set of
ads.lib files in different directories that refer to different processes. By starting ADS
in the proper directory, the related design kits will be loaded for that session. An
advanced CAD manager may even choose to set up a system of scripts that controls
the ads.lib files for the end user to further tailor the environment on the fly for a
specific manufacturing process.

Note To start ADS from a specific directory on unix, cd to that directory. On a PC,
multiple shortcuts can be created and the shortcut property “Start in ” can be set to
different startup directories.

Even if a design kit is listed in the system ads.lib file for access by all engineers, the
engineer can still disable that configuration by telling ADS to only load ads.lib files in
the local area. This can be set up by choosing the DesignKit > Setup Design Kits menu
pick from the ADS Main window. The current design kit configuration can be viewed

Table 4-5. The ads.lib File Locations

Level Directory Description

SITE LEVEL $HPEESOF_DIR/custom/design_kit An ads.lib file in this location on a
networked system lists all the design
kits that are available for all users.

USER LEVEL $HOME/hpeesof/design_kit An ads.lib file in this location lists
design kits that only the user has
access to.

STARTUP LEVEL Startup directory An ads.lib file in this location lists
design kits that will only be available if
ADS is started in this directory.

PROJECT LEVEL Project directory An ads.lib file in this location is read
when the project is opened. Any
design kits listed in it will be made
available for designs in the project.
4-34 The ads.lib Template

using the List ADS Design Kits dialog by choosing DesignKit > List Design Kits menu.
For more information, refer to “Viewing Configuration Files and Variables” on
page 8-8.

If a design kit is listed in more than one ads.lib file, those specified in the $HOME
location will have precedence over those under $HPEESOF_DIR, and those specified
in the startup directory will take precedence over those in the $HOME location.
Additionally, each project directory may have its own ads.lib file. This file will be read
when a project is opened, and any design kits specified in that file will be loaded. If a
design kit by the same name is already open, it will be overwritten with the new
information.

Closing a project to open a different project will not unload design kits opened in that
project since design kits cannot currently be unloaded without restarting ADS.

Even though all design kits are intended to be able to coexist in ADS, there may be
cases where this is not possible. Some older design kits may not comply with the
standard format. Additionally, ADS has a requirement that all components have
unique names in ADS, so names cannot be reused between design kits. If these types
of problems are encountered, they can usually be overcome by enabling and disabling
design kits as needed through the user interface or by manually editing ads.lib files
and the design_kit.cfg file. Additionally, some custom AEL in older, non-standard
design kits may have problems co-existing with the current built-in design kit
software. Chapter 8, Setting Up Design Kit Software and Menus includes
instructions for temporarily disabling the new software for this rare case.

AEL Code for Loading a Design Kit
As mentioned in the previous section, a design kit will contain a boot file that helps
the system load the design kit. The name of this file is recorded in the ads.lib file so
there isn’t a reserved name for the file that is searched. However, the name boot.ael is
typically used in most ADS design kits today and the file resides in the de/ael
subdirectory of the design kit directory structure.

A boot file can be used to load the AEL item definitions for all components in a design
kit, as well as to set up the palettes. The Chapter 3, ADS Design Kit Tutorial gives an
example of this use. Additionally, the boot file may be used to define some global
variables or functions specific to the design kit. These are usually for advanced
functionality and specific details are not included in this document.

Including a boot file is optional. If a boot file is not specified in the ads.lib file,
component AEL will still be loaded and the library browser will still have knowledge
AEL Code for Loading a Design Kit 4-35

Basic Parts of an ADS Design Kit
of the library and sub library definitions, as described earlier in this chapter. The
program will first look for an item definition file (.idf) in the circuit/records directory.
If this is found, all the item definition AEL functions will be loaded from the .idf file.
If no .idf file is present, any application extension language (.ael) or compiled AEL
files (.atf) stored in circuit/ael will be read. Either way, the control (.ctl) and records
(.rec) files from the circuit/records directory will be read.

As mentioned in the previous section, the design kit name as stored in the first field
of the ads.lib template becomes a global AEL variable containing the path to the
design kit directory. This can be used in AEL code to find other files in the design kit.
See the boot.ael and palette.ael sections of the tutorial for a specific example of how
this variable is used.

The about.txt File
A file named about.txt should be supplied and stored in the doc directory of the design
kit structure. This is required for version tracking and will assist Agilent
Technologies customer support. The file will contain information such as the design
kit version and date created. Process and component information can be included, as
well as source information if the models were translated from another library.
Revision history, support contact information or any other details can be listed if
desired.

A template for this file is shown in Table 4-6. A future version of the design kit
software may have a menu pick to give the user easy access to this information.

For more information on design kit versions, refer to “Assigning a Version” on
page 5-1.

Table 4-6. Design Kit about.txt Template

Name:

Version:

Date:

Description:

Revision
History:
4-36 The about.txt File

The Example Project
The quickest way to help your customers start using your design kit is to provide a
sample design that they can work from. This is a simple way for them to see that a
design kit is installed properly and verify that they can run a simulation. It is also a
way for you to show some special features of the design kit.

To add the example project to the design kit, first create and save a small test circuit,
including a process or include component if required. Then simulate the circuit and
save the data display. More test circuits can also be saved if desired. When all test
designs have been saved, archive the project using the File > Archive Project menu
pick in the ADS Main window. Copy the archived project to the examples directory in
the design kit file structure. The tutorial steps in Chapter 3, ADS Design Kit Tutorial
can also be referred to for help in building an example project and storing it with the
sample design kit.
The Example Project 4-37

Basic Parts of an ADS Design Kit
4-38 The Example Project

Chapter 5: Completing the Design Kit
This chapter describes the process of finalizing an ADS Design Kit. Verification is an
essential step in design kit creation if model files were translated from another
simulator format. There is a standard method for packaging and distributing design
kits that should be adhered to, and understanding the requirements of design kit
support is also important. This chapter is mostly aimed at design kits that are being
developed for distribution outside of the organization where they were developed.

Verifying a Design Kit
If a design kit contains translated models, verification of those models is an essential
part of ADS design kit development and potentially the most time consuming part of
creating a design kit. This is because there can be significant differences between
how simulators work, due to the use of different equations or unique extensions to a
base technology.

An engineer working on verification must understand the details of the model very
well, and must take the time to understand how to correct for simulation differences.
To assist in this verification process, Agilent Technologies has developed a model
verification tool. Results of the verification can be saved and presented to your
customers to give them confidence in the models and the design kit.

Assigning a Version
Each release of a design kit must have a version assigned to it for the design kit to
qualify as following the standard. The version can be any string of your choice, but it
must be registered in the template ads.lib file. For more information on the ads.lib
file, refer to “The ads.lib Template” on page 4-33.

This version must be changed any time even one file in a design kit is changed, and
the whole design kit should be repackaged and shipped as a single unit, to maintain
the integrity of the complete set of files. This is very important for tracking down
customer problems. If a customer has a problem with a design in ADS, the Agilent
EEsof-EDA Customer Support department cannot investigate the issue without
installing the exact version of the design kit that the customer has installed.

It is highly recommended that a revision control software package is used to store the
design kit files during development and after release. This type of software tags each
Verifying a Design Kit 5-1

Completing the Design Kit
individual file with a version. The complete set of files can then be tagged at a release
with a tag that is related to the version of the design kit seen by users.

Packaging for Distribution
To distribute your design kit, create a zip archive from the files. Zip is the only format
recognized by the ADS design kit installation software. Zip and unzip are shipped as
a standard part of ADS. The files are in the $HPEESOF_DIR/bin directory, including
documentation in the zip.doc file. If your design kit is packaged in anything other
than a .zip file, you must include installation instructions with the design kit and be
prepared to support your customers if they have installation problems.

The design kit standard does not extend into the distribution method. It is up to each
company to decide the best method for distributing its design kits. The typical
method for foundry design kit distribution is from the foundry web page.

Once you have created and tested your design kit, there are a couple more steps you
can take prior to zipping up the contents of the design kit.

1. Remove all .ael files. Check the de/ael and circuit/ael directories. If there is a
.atf file for every .ael file, you can remove the .ael files. This will prevent users
from modifying your code and changing the behavior of your design kit. It also
hides the code you have built into your callbacks. One exception to this is the
palette.ael file. Some users prefer to control the ordering of their palettes
themselves. Since there is no user interface to control the palette configuration,
setting the palette location in the palette.ael file is the only way to do this.
There is no harm in shipping the palette.ael file.

2. Remove the circuit/ael directory. Only do this if you are using demand-loaded
components and have combined all the ael files in this directory into a single
.idf file.

3. Make sure that none of the files in your design kit are read-only. All files must
have full write permission or the unzip procedure may fail. To set the write
permission on all files:

On unix, from the directory at the top of the design kit, enter the command:
chmod -R 777 *

On PC, open the Windows Explorer file browser and click the right mouse
button on each directory and filename. Select Properties and ensure the
Read-only attribute is unchecked.
5-2 Packaging for Distribution

4. Zip the design kit, including the top level directory. Make sure before you start
the zip that you are pointing to the top level directory of the design kit, the one
which bears the name of the design kit. If you are performing this process from
the command line in a DOS or unix shell, cd to the directory above the design
kit. To create the zip file my_design_kit.zip, enter the following command in a
DOS shell or unix window:

zip -r my_design_kit my_design_kit

5. To test the result, copy the zip file to a different directory and unzip it. The
unzipped image should contain only one directory at the top level. All
subdirectories will be one level below that (see Figure 5-1).

Figure 5-1. Design Kit Directories

Supporting a Design Kit
The creator and supplier of a design kit is responsible for informing the users of the
kit how to get help with the kit, including installation, component and model or data
file problems. Agilent Technologies customer support can help with general setup
issues or simulation issues, but if the problem is specific to the design kit, the support
personnel will need access to the design kit.

Your company is expected to have a dedicated resource for this purpose. This person
will handle the support calls first. If the problem is determined to be with the ADS
environment or simulator, then the call and the design kit can be forwarded to the
Agilent EEsof EDA customer support department. The customer should not contact
Agilent Technologies directly, since they will not have permission to share the design
kit with the Agilent EEsof EDA customer support department. Additionally, if your
customer works directly with Agilent Technologies and it is discovered that the
Supporting a Design Kit 5-3

Completing the Design Kit
problem is in the design kit, then you may not get the feedback that you need to make
the corrections to the kit.
5-4 Supporting a Design Kit

Chapter 6: Additional Parts for ADS Design
Kits
This chapter describes additional parts that may be added to a design kit. The basic
parts were described in Chapter 4, Basic Parts of an ADS Design Kit. The parts
described in this chapter are used to provide extra functionality to a kit.

This chapter is divided into two sections. The topics in the first section are covered
sufficiently that you should be able to implement the functionality in your design kit.
The topics in the second section include a description of capabilities that the system
has to offer, but it is beyond the scope of this document to cover them in depth at this
time. Contact Agilent EEsof-EDA’s Solution Services organization for assistance in
implementing these features in your design kit.

Adding Simulation Data to a Design Kit
In Chapter 4, Basic Parts of an ADS Design Kit, you learned about supplying
simulation data in the form of an included netlist file which contained model and
parameter information. This is the typical style for an RFIC design kit. Other
methods of supplying simulation data are used by design kits which serve different
technologies. These methods are described in the following section.

S-Parameter and MDIF data

ADS schematics can include components such as SnP, S2P, MDIF and
DataAccessComponent. These components point to external data files. The file
browser on these components uses the DATA_FILES configuration variable to find all
data files in that path. If you use the browser to locate the files, be sure to manually
strip off the full path to the selected file. You do not want your customers to receive
files with a hard-coded path to files on the machine where the design kit was
developed.

When a design kit is loaded, the circuit/data subdirectory under the design kit
directory is added to the DATA_FILES path variable automatically. The simulator
will then be able to find the data file in the path. Make sure the names of your data
files are unique to ensure that the simulator finds only one file with the given name.
Just as has been done with all other names in your design kit, it is good practice to
prefix the file name with the name of the company and/or process.
Adding Simulation Data to a Design Kit 6-1

Additional Parts for ADS Design Kits
Root Model Files

The ADS component HP_FET points to a model called HP_FET_Model. This model
references an external data file, which is a text file generated from IC-CAP. If your
design kit uses Root model files, the same process is followed as described above for
S-parameter and MDIF data files. The file should be stored in the circuit/data
subdirectory of the design kit, and the DATA_FILES path will be automatically
extended so that the simulator will find the file. The file reference on the component
should be the file name only with no path information included, and the file name
should include some reference to the company or process, to ensure it is unique
between all design kits.

User Compiled Models
Starting in ADS2002, user compiled models can be distributed as dynamically linked
libraries (.dll file on PC) or shared libraries (.sl or .so files on unix platforms). This is
especially important for design kit developers and users because it enables the design
kit user to access custom models from multiple design kits simultaneously. To create
a user compiled model for a design kit, use the schematic menu pick Tools
>User-Compiled Model and the associated documentation “Analog/RF User-Defined
Models”. Be sure to make your component name specific to your design kit so it
remains unique when used with other design kits.

When the model has been compiled into a dynamically linked library (with file
extension .dll, .sl or .so), copy it and the associated index file deviceidx.db file from
the networks directory of the current project to the bin/$ARCH subdirectory of your
design kit. To determine the proper subdirectory of bin, run the program hpeesofarch,
which resides in $HPEESOF_DIR/bin. For ADS2002, the expected values on the
different platforms are win32, hpux10, sun57 and aix4. If you add more files to the
directory, you must regenerate the index file by running hpeesofsim -X in that
directory. This does not require a license but the appropriate shared library/DLL
environment variables must be set. For more information on setting the shared
library/DLL environment variables, refer to Appendix E of the “RFIC Dynamic Link
Library Guide”.

When a user enables a design kit with a dynamically linked user compiled model, the
proper design kit directory is added to the path variable EESOF_MODEL_PATH,
which is read by the simulator from the simulator configuration file hpeesofsim.cfg to
locate required custom models.
6-2 User Compiled Models

To complete your design kit, copy the project to each supported platform, regenerate
the dynamic library, and copy the files to the design kit.

Parameter Callbacks
A parameter callback is an AEL function that is executed automatically when a
component parameter is modified in the schematic editor. The function is provided by
the design kit developer but must contain the specified arguments and must return
the exact value type that is documented. The purpose of parameter callbacks is to
provide a means of controlling the value of component parameters that depend on the
values of other parameters of the same component. It is expected that you have at
least a minimal understanding of programming terms to comprehend this section.

Adding a Callback to a Parameter Definition

Parameter callback functions are associated with individual parameters of a
component by means of information in the call to create_parm() for the specific
component’s parameter. This is done by the addition of a optional callback list.

For example, a create_parm() call without a parameter callback function might read
as:

create_parm("X", // parameter
 "Unknown value", // label
 68608, // attribute
 "StdFormSet", // formset
 0, // unit code
 prm("StdForm", "10.0")), // default value

Examples of the create_parm() call without a parameter callback function are also
given in Chapter 3, ADS Design Kit Tutorial.
Parameter Callbacks 6-3

Additional Parts for ADS Design Kits
The same parameter information with an associated parameter callback function
might read:

create_parm("X", // parameter

 "Unknown value", // label

 68608, // attribute

 "StdFormSet", // formset

 0, // unit code

 prm("StdForm", "10.0"), // default value

 list(dm_create_cb(// callback list

 PARM_MODIFIED_CB, // callback type

 "cb_funct_name", // callback function name

 "", // clientData

 TRUE))), // callback enable

Parameter callback function information is incorporated into the call to create_parm()
as a list() of calls to the function named dm_create_cb() . In the example here, there is
only one such call to dm_create_cb() , but there could be multiple calls as separate
entries of the list. This way, a parameter could be associated with a number of
independent callback functions.

The function dm_create_cb() takes four (4) arguments:

• For parameter callback functions, the first argument must be
PARM_MODIFIED_CB. This is the callback type.

• The second argument − a quoted string − is the name of the AEL function to be
invoked when the associated parameter is modified in the schematic editor.

• The third argument − called clientData − is passed to the callback function. An
example of a use of this argument is included in “Writing the Parameter
Callback Function” on page 6-5. This argument can be an empty string as
shown above if there is no extra information to be passed to the callback
function. The parameter data is passed automatically.

• The fourth argument - TRUE or FALSE - is used to enable or disable the
callback function association.

For more information on the dm_create_cb() function, refer to chapter 15 of the “AEL”
documentation. The examples on the following pages will also help you understand
parameter callbacks.
6-4 Parameter Callbacks

Writing the Parameter Callback Function

The section above described how to add a parameter callback when creating a
parameter. Now the actual callback function needs to be written. This is the AEL
code that is automatically executed when the component parameter is modified in the
schematic editor.

The function declaration has a predefined set of three arguments, cbP, clientData and
callData. The callData is used to access all parameters on the component so you can
use the values of one or more independent parameters to calculate the value of a
dependent parameter. clientData is a string that was set when the callback was
added to the parameter. The clientData string gives you the flexibility to define
callback functions in a couple different ways.

The first method used to define callback functions is to have a separate function for
each parameter on a component. In this case, you might not need to set clientData at
all. When it is being executed, the AEL function will always know which parameter
was being modified when the callback was triggered.

The second method for defining callback functions is to have only one function for
each component. The advantage is that it combines all the code related to the
component in one location. It also allows reuse of code, which makes it easier to
maintain the code, since changing it in one place changes it for all cases. To use this
method, you will need to supply an identifier so the function knows which parameter
is being modified. This identifier is the string passed in as clientData.

The basic structure of a parameter callback function is shown below, with examples
of both of these methods on the following pages.

defun cb_funct_name(cbP, clientData, callData)

{

 decl dependentParmData = NULL;

 //

 // additional declarations

 //

 // and

 //

 // callback function code

 //

 return dependentParmData;

}

Parameter Callbacks 6-5

Additional Parts for ADS Design Kits
This structure should be used as a template, substituting an appropriate name for
cb_funct_name and replacing the section marked as comments with parameter
declarations and AEL code. Note that it is important to maintain the illustrated
declaration, initialization, and return of the variable dependentParmData. Examples
on the following pages will clarify this.

Note It is OK to change the argument names or dependentParmData variable name,
as long as it is done consistently throughout the function.

The arguments of the function are:

• cbP - This is a pointer to the function itself. There will not be any reason to use
this argument.

• clientData - This can be any information in string format. It is set when the
callback is declared in the dm_create_cb() function.

• callData - This is the parameter information for the component being edited.
Examples of how to access and modify the parameter values are given in the
following pages.

It is not necessary to understand the structure of this information, since access
functions are provided to extract information about specific parameters.

Callback Example - One Function per Parameter

As an example of a callback that is filled out and functional, consider a component
(perhaps a subcircuit model) that has three parameters A, B, and C. Further, assume
that the following relationships are to be established among these three parameters:

• When the value of either parameter A or B is modified, the value associated
with parameter C is to be adjusted so that it is equal to the sum of A and B;

• When the value of parameter C is modified, the values associated with
parameters A and B are to be adjusted so that they are each equal to C/2.
6-6 Parameter Callbacks

One way of programming these relationships is shown in the following AEL code.
First is a code fragment shows part of the item definition AEL for the parameters of
the component:

create_parm("A", // parameter

 "A parameter value", // label

 68608, // attribute

 "StdFormSet", // formset

 0, // unit code

 prm("StdForm", "10.0"), // default value

 list(dm_create_cb(// callback list

 PARM_MODIFIED_CB, // callback type

 "a_modified_cb", // callback function name

 "", // clientData

 TRUE))), // callback enable

create_parm("B", // parameter

 "B parameter value", // label

 68608, // attribute

 "StdFormSet", // formset

 0, // unit code

 prm("StdForm", "10.0"), // default value

 list(dm_create_cb(// callback list

 PARM_MODIFIED_CB, // callback type

 "b_modified_cb", // callback function name

 "", // clientData

 TRUE))), // callback enable

create_parm("C", // parameter

 "C parameter value", // label

 68608, // attribute

 "StdFormSet", // formset

 0, // unit code

 prm("StdForm", "10.0"), // default value

 list(dm_create_cb(// callback list

 PARM_MODIFIED_CB, // callback type

 "c_modified_cb", // callback function name

 "", // clientData

 TRUE))), // callback enable
Parameter Callbacks 6-7

Additional Parts for ADS Design Kits
Next, suitable callback functions are:

defun a_modified_cb(cbP, clientData, callData)

{

 decl dependentParmData = NULL;

 decl a_mks = pcb_get_mks(callData, "A");

 decl b_mks = pcb_get_mks(callData, "B");

 dependentParmData = pcb_set_mks(dependentParmData,

 "C", a_mks + b_mks);

 return dependentParmData;

}

defun b_modified_cb(cbP, clientData, callData)

{

 decl dependentParmData = NULL;

 decl a_mks = pcb_get_mks(callData, "A");

 decl b_mks = pcb_get_mks(callData, "B");

 dependentParmData = pcb_set_mks(dependentParmData,

 "C", a_mks + b_mks);

 return dependentParmData;

}

defun c_modified_cb(cbP, clientData, callData)

{

 decl dependentParmData = NULL;

 decl c_mks = pcb_get_mks(callData, "C");

 dependentParmData = pcb_set_mks(dependentParmData, "A", c_mks/2.0);

 dependentParmData = pcb_set_mks(dependentParmData, "B", c_mks/2.0);

 return dependentParmData;

}

The three functions above are very similar. The third one, c_modified_cb() , will be
used to provide a line by line description of the details of code which retrieves and
sets parameter values. It is expected that the reader already understands basic
programming concepts.

line 1: decl dependentParmData=NULL;
6-8 Parameter Callbacks

dependentParmData is a variable that will be used to collect the new parameter
values. It must be set to NULL to start with so no garbage gets attached to the
component.

line 2: decl c_mks = pcb_get_mks(callData, "C");

As described in the previous section, callData contains the starting values of all the
parameters on the component. pcb_get_mks() is used to get the numerical value of
any parameter on the component. In this case, it is the value of C, which the user just
set in the schematic, which is being retrieved. It was the modification of this value in
the schematic that caused this code to be executed, or triggered the callback.

The syntax for this function is:

mksValue = pcb_get_mks(callData, paramName);

Where:

callData is the third argument of the callback function, if the callback is of type
PARM_MODIFIED_CB.

paramName is the name of the parameter to get the value from. This must be a
quoted string.

mksValue is the requested value, returned in MKS (unscaled) units.

line 4: dependentParmData = pcb_set_mks(dependentParmData, "A", c_mks/2.0);

Note that dependentParmData is both passed into this function and returned from it.
It needs to be reset because it is accumulating the values for the dependent
parameters. A and B are dependent on the value of C in this example.

The syntax for this function is:

paramData = pcb_set_mks(paramData, paramName, value)

Where:

paramData is a structure containing parameter data. It is NULL the first time
it is called. In addition to this variable being a parameter to this function, the
value returned by this function must also be assigned to it.

paramName is the name of the parameter to set the value of. This must be a
quoted string.

value is the new value in MKS (unscaled) units.

line 5: return dependentParmData;
Parameter Callbacks 6-9

Additional Parts for ADS Design Kits
A callback of type PARM_MODIFIED_CB, which these are, must return the collected
parameter information, which is stored in dependentParmData.

The function pair pcb_get_mks() and pcb_set_mks() is aware of scale factors that have
been associated with a parameter’s value. That is, if a resistance is specified as
R=1kOhm, then pcb_get_mks() returns a value of 1000. Similarly, a value of 2000
supplied as the third argument of pcb_set_mks() for the same parameter results in
R=2kOhm.

Not all parameter values are numerical. In addition to pcb_get_mks() and
pcb_set_mks() , there are two more function pairs that are used to retrieve and store
values of component parameters. The functions named pcb_get_form_value() and
pcb_set_form_value() are used (respectively) to get and set values associated with
constant formsets. For more information, refer to “Forms and Formsets” on page 4-11.

Similarly, string data can be retrieved and set using pcb_get_string() and
pcb_set_string() . Arguments of these four functions exactly parallel those for
pcb_get_mks() and pcb_set_mks() except that no scaling rules are applied. For more
information on these functions, refer to chapter 10 of the “AEL” documentation.
Functions are listed alphabetically in the AEL manual.

Callback Example - One Function per Component

Another way to program the above example makes use of the clientData field as a
switch to select different logic within a single function. First, the item definition AEL
code is revised as:

create_parm("A", // parameter

 "A parameter value", // label

 68608, // attribute

 "StdFormSet", // formset

 0, // unit code

 prm("StdForm", "10.0"), // default value

 list(dm_create_cb(// callback list

 PARM_MODIFIED_CB, // callback type

 "abc_modified_cb", // callback function name

 "A", // clientData

 TRUE))), // callback enable

create_parm("B", // parameter

 "B parameter value", // label

 68608, // attribute
6-10 Parameter Callbacks

 "StdFormSet", // formset

 0, // unit code

 prm("StdForm", "10.0"), // default value

 list(dm_create_cb(// callback list

 PARM_MODIFIED_CB, // callback type

 "abc_modified_cb", // callback function name

 "B", // clientData

 TRUE))), // callback enable

create_parm("C", // parameter

 "C parameter value", // label

 68608, // attribute

 "StdFormSet", // formset

 0, // unit code

 prm("StdForm", "10.0"), // default value

 list(dm_create_cb(// callback list

 PARM_MODIFIED_CB, // callback type

 "abc_modified_cb", // callback function name

 "C", // clientData

 TRUE))), // callback enable

Next, the logic of the above three callback functions is combined into a single
function. The value of the clientData is compared (strcmp) to A, B and C and the logic
for A and B can be combined. This means if the value of either A or B is modified, the
dependent parameter C is recalculated, but the code only needs to be provided once in
the callback, as opposed to the previous example where it was provided separately for
each parameter.

defun abc_modified_cb(cbP, clientData, callData)

{

 decl dependentParmData = NULL;

 if((strcmp(clientData, "A") == 0) ||

 (strcmp(clientData, "B") == 0))

 {

 decl a_mks = pcb_get_mks(callData, "A");

 decl b_mks = pcb_get_mks(callData, "B");
Parameter Callbacks 6-11

Additional Parts for ADS Design Kits
 dependentParmData = pcb_set_mks(dependentParmData,

 "C", a_mks + b_mks);

 }

 else if(strcmp(clientData, "C") == 0)

 {

 decl c2_mks = pcb_get_mks(callData, "C")/2.0;

 dependentParmData = pcb_set_mks(dependentParmData, "A", c2_mks);

 dependentParmData = pcb_set_mks(dependentParmData, "B", c2_mks);

 }

 else

 fputs(stderr, "Illegal clientData value);

 return dependentParmData;

}

Optimization Considerations

If any (or all) of the parameters of a component have associated modified parameter
callback functions in the design environment AND these parameters are to be
optimized, then the same relationships between the parameters must be included in
the model code. That is, the design environment does not automatically enforce these
relationships in the simulation environment during optimization (The relationships
will, however be enforced in the display of components in a design when optimization
variables are updated.) It may be desirable to restrict the optimizability of some
parameters.

Developing and Testing Modified Parameter Callback Functions

As instructed in the tutorial, parameter callbacks should be included in the AEL file
that holds the item definition for the associated element. In the tutorial, this file was
called mykit_item.ael. The callbacks must be listed before the call to create_item() so
they will be stored properly in the database of demand-loaded components. Use of
demand-loaded components is optional, but it is recommended that you follow this
format for your AEL files anyway, in case it is used in the future. For more
information, refer to “Modifying the Item Definition File” on page 3-21, “Adding
Demand Loaded Components” on page 3-29 and “Demand Loaded Components” on
page 4-21.
6-12 Parameter Callbacks

Also, note that if the modified parameter callback function is being added to the AEL
for a user-compiled model, this (AEL) file is subject to being overwritten by the design
environment if any modifications are made therein. Keep a backup copy to put the
callback information back in place as needed. You may need to reload the element
AEL by entering load("...") ; at the design environment command line (in the ADS
Main window under Options > Command Line).

Some debugging information is available by entering the following line in the
command line window:

debug_msg = 1;

Try this if you are not getting expected results. Debug messages are written to stderr.
On unix, this is the window that ADS was started from. On PC, ADS must be started
with a modified target in the shortcut, as described in “” on page 3-6.

Limitations of Parameter Callbacks

• Reference to data access components is not supported for elements that have
parameters with modified parameter callback functions. A message is written
to stderr if such a reference (PARM=file{...}) is made and debug_msg is enabled
as described above.

• The modified parameter callback functions may be confused about unit scale
factors when the right hand side of a parameter assignment involves an
expression.

• Modified parameter callback functions do not modify dependent parameter
values that are either variables or expressions.

• The AllParams parameter (that is used on model data items) is ignored.

• ADS component parameters which have been given the attribute of "not
editable" (PARM_NOT_EDITED - attribute bit 1) are not changeable by
modified parameter callback functions.

• There is currently no support for tuning, sweeping, optimization, back
annotation, device operating point, etc.

• Parameter callbacks cannot use variable (VARs), they must be constants.
Parameter Callbacks 6-13

Additional Parts for ADS Design Kits
Netlist Callbacks
A parameter callback, described in the previous section, is a piece of AEL code that is
executed when a parameter is modified on the schematic. A netlist callback is similar,
but the AEL code for a netlist callback is executed when a schematic is netlisted for
simulation. A netlist callback is defined for a component on the create_item()
statement. Most components will not require a netlist callback. They can use the
predefined netlisting rules for a general component or a component with a model, as
explained in “Item Definition” on page 4-4. In a design kit, a netlist callback is
typically used for the process include component, as defined in “Netlist Include or
Process Component” on page 4-22.

A netlist callback is defined by the function dm_create_cb() . This function was defined
above in “Adding a Callback to a Parameter Definition” on page 6-3. The only
difference is that instead of PARM_MODIFIED_CB, the callback type for a netlist
callback is ITEM_NETLIST_CB.

An example of a netlist callback is included in the “Adding a Netlist Include
Component” on page 3-18. It is hard-coded to output the #include statement with the
proper filename as determined from the design kit variables. The #include statement
is described in “The #include Pre-processor Command” on page 4-29. It can also
output the #define statement used to enable a specific corner case, also described in
“The #ifdef and #define Pre-processor Commands” on page 4-30. The example from
the tutorial is included here with more explanation.
6-14 Netlist Callbacks

create_item("mykit_include",

...

list (dm_create_cb (ITEM_NETLIST_CB,

"mykit_include_netlist_cb", NULL, TRUE)));

A part of the create_item() statement is shown above. Note that most of the
arguments were omitted for this example. The callback information is a list, inserted
before the list of component parameters. There are no parameters on this component.
The list contains one or more calls to dm_create_cb() . The arguments to
dm_create_cb() are:

• The first argument is the callback type. It must be ITEM_NETLIST_CB for a
netlist callback.

• The second argument is the function name. This is the AEL code that will be
executed during netlisting when this component is encountered in the
schematic.

• The third argument is called client data. This is a string that may contain any
information that you would like to use in the code. For this example, no client
data is passed.

• The fourth argument is set to TRUE or FALSE and is used to enable or disable
the callback.

The actual callback code is shown below.

defun mykit_include_netlist_cb (cbP, clientData, callData)

{

decl fileName="", netlistString="";

fileName = strcat(MYKIT_CIRCUIT_MODEL_DIR, "mykit_models.net");

netlistString=strcat(netlistString, "#include '", fileName,"'\n");

return(netlistString);

}

Netlist Callbacks 6-15

Additional Parts for ADS Design Kits
The arguments on the function are different than the arguments to dm_create_cb()
when the callback was created. The callbacks on a callback of type
ITEM_NETLIST_CB will always be the following:

• cbP - a pointer to the function, not needed for this example.

• clientData - a string defined in dm_create_cb() and passed in for reference. Also
not needed for this example. The parameter callback example in "Callback
Example - One Function per Component" gives a good example of how to use a
clientData string.

• callData - also not needed for this example. Again, the parameter callback
examples earlier in this chapter make use of these parameters.

For this example, the global path variable MYKIT_CIRCUIT_MODEL_DIR, which
was set in palette.ael, is used to build the path to the model file. Then it is formatted
into a string starting with the #include pre-processor statement. Finally the value
netlistString is returned to the calling function. This is the string that is output to the
netlist. A more complex example of a netlist callback, which includes the use of forms
and formsets, is shown in “Example Process Component with Forms and Formsets”
on page 4-25.

Layout vs. Schematic Comparison
The <design_kit_name>/netlist_exp directory contains all files needed by the ADS
Netlist Exporter. The Netlist Exporter was designed for use in the ADS Front End
Design Flow, which assumes that the layout was manually entered in a system
outside of ADS. By providing rules files for each component in a design kit, the
Netlist Exporter can output netlists in the proper form for many LVS tools, thus
enabling a layout vs. schematic comparison to validate that the layout created
outside of ADS matches the schematic created in ADS. Since the Netlist Exporter is
configurable, rules can be written for any LVS tool. For detailed instructions on
providing the rules files to insert into your design kit, refer to the ADS “Netlist
Exporter Setup” documentation.

Creating Design Kit Documentation
All design documentation is saved in the doc subdirectory of the design kit directory.
The documentation that you are recommended to provide in “The about.txt File” on
page 4-36 and “Providing Basic Documentation” on page 3-13 is a very basic
summary of the design kit which is intended to be presented in a standard design kit
6-16 Layout vs. Schematic Comparison

dialog in the future. More comprehensive documentation, such as detailed component
information, can also be provided in the form of HTML files, which can be included by
the end user into the ADS documentation set. At the present time, there is no
automatic procedure for this. The only way to get documentation included in the full
manual set is to incorporate it into the index file in the installation directory. This is
not highly recommended, as any future releases of ADS may overwrite the index file
that you have modified.

If you do wish to provide .html files with your design kit, you must instruct your
customers to append the index file to the system index file, and to save a copy in case
the master version gets overwritten. There are two tools in ADS to help you create
this documentation. The ADS “Electronic Notebook” can help you generate the html
document and the “DesignGuide Developer Studio” can help you generate the index
file.

Layers and Preferences Files
The de/defaults directory of an ADS installation includes default preference (*.prf)
and layers (*.lay) files for the schematic and layout windows. These files have names
such as schematic.prf, schematic.lay, layout.prf and layout.lay. Additional preferences
files are included for different schematic units, such as mm, mil and um. There are
three configuration variables in de.cfg which are used by ADS to determine where the
layers and preferences files should be read from. They are used as follows:

• PREFERENCES_DIR - When a new project is created in ADS, the default
layers and preferences files are copied from this location.

• LAYERS_PATH, PREFERENCES_PATH - Each design file contains the names
of the layers and preferences files used to create that design. A new design looks
for the default files in the project directory. When a new or existing design is
opened, if the project directory does not contain the specified layers or
preferences files, the specified files are searched for in these directories.

Design kits may provide default layers and preferences files so that their components
look the same way as they were created. However, the design kit infrastructure
software does not provide any functionality to add the design kit directory to the
path. This is because more than one design kit may contain conflicting definitions of
layers and preferences and the user must have control over which they want to use.
In a multi-chip design, the system cannot determine which layers to use for which
parts.
Layers and Preferences Files 6-17

Additional Parts for ADS Design Kits
This is something that a CAD manager or end user will need to control for his
designs. Where internally developed design kits are used, a CAD manager can
customize the environment to handle these files. A design kit prepared for
distribution should contain instructions if the end user needs to make use of supplied
default preference and layers files.

The design kit can handle this situation in one of two ways. First, a menu pick can be
provided which will assist the user in making a conscious effort to set up these files.
The callback from the menu pick would copy the custom versions of the files from the
design kit directory to the project directory. Using the default names listed above
(schematic.prf, schematic.lay, layout.prf, layout.lay) will ensure that each design uses
these files, but if files with those names were already present in the project directory,
any designs built with the default files will not look right after being replaced by the
custom files. If a unique name is given to the custom files, any designs using them
will have to be instructed to load the custom files by name. This can be done from the
Preferences for Schematic and Layer Editor dialogs with the Read button.

In a controlled environment, custom AEL code can be added to a design kit which will
modify the DIR or PATH configuration variables when a design kit is enabled so that
the system always looks to the design kit directory for the custom layers and
preferences files. This can be done by resetting the PREFERENCES_DIR path so
that the custom files are copied from the design kit into a project when it is being
created. The other option, setting the LAYERS_PATH and PREFERENCES_PATH
variables to point first to the design kit directory will ensure that the custom files are
used but will cause problems if a user tries to make changes in the layers or
preferences dialog.

Advanced Topics
The topics in the remainder of this chapter are included to give you a preview of more
of the capabilities that Advanced Design System has to offer. It is beyond the scope of
this document to cover them in depth at this time. In some cases, references are given
to other ADS documentation which will give you more information on the topics. You
can also contact Agilent EEsof-EDA’s Solution Services organization for assistance in
implementing these features in your design kit.

Expressions

A design kit can include expressions for data processing before simulation or after
simulation. A VAR component can be placed in schematic and expressions can be
6-18 Advanced Topics

attached to it which will be evaluated before simulation. A MeasEqn component can
be placed in schematic and expressions attached to it will operate on data generated
during simulation. This type of expression can also be entered directly onto a data
display.

There is no automatic procedure in the design kit infrastructure to tie the
expressions in the expressions files in the design kit to the appropriate place in the
schematic or data display windows, so they have to be copied manually, or a script
provided for using them.

Templates

ADS supports two types of templates - simulation templates and data display
templates. A simulation template can facilitate setting up common simulations and a
data display template can contain a standard set of plots that can be used in different
projects.

A design kit can include templates for simulation or for data display. Both tools in
ADS have a menu pick Save As Template (data display) or Save Design As Template
(schematic). Save a template that is designed specifically for use with your design kit
and store it in the circuit/templates directory.

When a user loads the design kit, the appropriate path variable will be extended to
include the design kit template directory and the templates will be available to users
of your design kit. This path variable is
DESIGN_KIT_TEMPLATE_BROWSER_PATH and it is referenced by
HP_TEMPLATE_BROWSER_PATH in hpeesofbrowser.cfg. For more information on
templates, refer to "Using a Template" in Chapter 2 of the ADS "User’s Guide" and
"Using a Template in Your Display" in Chapter 1 of the ADS "Data Display" manual.

Adding Custom AEL

There are times when a design kit developer may choose to include additional
functionality in a design kit in the form of custom AEL code. The best way to load a
custom AEL file is to have it loaded from the boot.ael file when a design kit is loaded.
Other methods which might involve modifying configuration variables are not
recommended. Your design kit should be easily distributable, so all files should reside
in the design kit directory structure and no manual steps should be required of the
end user.
Advanced Topics 6-19

Additional Parts for ADS Design Kits
Custom AEL files can be stored in the de/ael directory or the utilities directory. The
location should be known by the boot.ael file so it can load the files with the full path.

To protect your AEL code, you can ship your design kit with the .atf files only. The .atf
files are compiled versions of the AEL code. This will prevent users from modifying
the code and the behavior of your kit. It should not be relied on as a form of security.

Adding Custom Menus to ADS

ADS has defined five user-definable menus in each window (main, schematic, layout)
to which users may add their own menus picks. The ADS “Customization and
Configuration” manual recommends one way to use these menus, but this is not
recommended for design kits for the following reasons:

• It will overwrite the menu if it has been defined by another user or application.

• Another user or application may overwrite your menu.

• It requires adding files outside of the design kit directory structure.

• Trying to define user menus from within the design kit directory structure to
avoid the previous problem requires loading an AEL file too late in the boot
process to add menus to the main window so only schematic and layout menus
can be added.

• Trying to load the AEL file earlier in the process to avoid the previous problem
requires modifying a configuration variable (DESIGN_KIT_UI_AEL).

• Using the default function name (app_add_user_menus()) makes the function
prone to being redefined by another user or application.

• Assigning a custom name to the function to avoid the previous problem requires
modifying a configuration variable (USER_MENU_FUNCTION_LIST).

A distributable design kit should not modify files outside of the design kit structure
and should not modify any configuration variables in saved configuration files.

For design kits that are for internal use only, the following are some methods to use
to add custom menus.

1. Create a new file $HOME/hpeesof/de/ael/usermenu.ael and copy the code from
Table 6-1 into the file. This controls adding the menus in each window, Main,
Schematic and Layout. The usermenu.ael file is read automatically when ADS
is started, and the function app_add_user_menus() is automatically called with
the appropriate winType when each window is being created. Notice the custom
6-20 Advanced Topics

main menu 1 item that now appears in the ADS Main window shown in
Figure 6-1.

Figure 6-1. Custom User Menu

2. Following the sample shown for the Main window, add appropriate function
calls to api_add_menu() for each window type. Also add the callback code. Save
the file.

3. If you want to change the function name from app_add_user_menus() to a name
unique for your kit, save a new variable USER_MENU_FUNCTION_LIST in
$HOME/hpeesof/config/de_sim.cfg but don’t forget to copy the old contents of
that list since the local definition will override the system one, which is in
$HPEESOF_DIR/config/de.cfg. Also check $HPEESOF_DIR/custom/config for
any files that redefine that variable. The new definition might look like this:

USER_MENU_FUNCTION_LIST = app_add_user_menu:mykit_add_user_menu

Beware that these menus are not protected and may be overwritten by an
application or user that is not using code like that in Table 6-1 that checks for a
free slot.

Custom Menu Item
Advanced Topics 6-21

Additional Parts for ADS Design Kits
Table 6-1. ADS Window Menu Control

//winType = MAIN_WINDOW, SCHEMATIC_WINDOW or LAYOUT_WINDOW
defun mykit_find_empty_user_menu(winType)
{
 decl menuCascadeH=NULL,i;
 // Do not edit the elements of the list mykitUserMenuList.
 decl mykitUserMenuList = list(deUserMenuName, deUser2MenuName,
 deUser3MenuName, deUser4MenuName, deUser5MenuName);
 api_select_window(winType);
 for (i = 0; i < listlen(mykitUserMenuList); i++)
 {
 menuCascadeH = api_find_menu(NULL, mykitUserMenuList[i]);

if (menuCascadeH != NULL && api_total_sub_menus(menuCascadeH) <= 0)
 return(menuCascadeH);
 menuCascadeH = NULL;
 }
 return(NULL);
}
// winType = MAIN_WINDOW, SCHEMATIC_WINDOW or LAYOUT_WINDOW
defun app_add_user_menus(winType)
{
 decl menuCascadeH, name;
 decl menuPickName, menuCB;
 menuCascadeH = mykit_find_empty_user_menu(winType);
 if(menuCascadeH == NULL)
 return;
 if(winType == MAIN_WINDOW)
 {
 api_set_menu_label(menuCascadeH, "main menu 1");
 api_add_menu(menuCascadeH, api_create_menu("main menu 1", NULL,
"main_menu_cb1", NULL, NULL, NULL));
 }
 else if(winType == SCHEMATIC_WINDOW)
 {
 // Add code for schematic window menu item here.
 }
 else if (winType == LAYOUT_WINDOW)
 {
 // Add code for layout window menu item here.
 }
}

6-22 Advanced Topics

Adding Custom Models to the ADS Simulator

Sometimes a model used in a design kit will not be available in the ADS simulator.
This type of model will have been created by your company as a user-compiled model.
In this case, your design kit must include a custom version of the simulator that
includes this model, and it will only be compatible with the specific release of ADS for
which it was created. For more information on how to create a user-compiled model,
refer to the ADS “Analog/RF User-defined Models” documentation.

As described in “Overview of the File Structure” on page 2-1, the user-compiled
simulator will need to be provided for all platforms. Some examples of the names of
directories in which to place each executable are listed below.

bin/hpux10

bin/hpux11

bin/aix

bin/sunos5.6

bin/winnt

If you supply a custom executable, your design kit will have to include directions
telling your customer to modify their search path so that the new hpeesofsim.exe is
picked up before the built-in version. Your user will also have to be informed that if
they have a design kit from another vendor which also contains a custom executable,
they will not be able to run a simulation with parts from both kits.

This process will become easier in the near future when user-compiled models can be
delivered in the form of a dynamically linked library. The multiple design kit
limitation will also be resolved.

ADS Layout Files

The ADS design kit infrastructure software is aimed initially at design kits for use
with the ADS Front End Design Flow. This design flow assumes that a schematic is
created and simulated in ADS and then the layout is entered manually in another
system for layout post-processing. Since there are many users of the ADS native
layout tool, the standard design kit structure also provides some standard directories
for these needs, which are documented below.
Advanced Topics 6-23

Additional Parts for ADS Design Kits
There is no special code in the design kit infrastructure code that uses these
directories. Custom AEL or custom menu picks can be provided with a design kit or
by a local CAD manager to help users include these files in their design work.

circuit/artwork - This directory is provided for AEL artwork
macro files for ADS layout.

circuit/substrates - This directory is provided for Momentum
substrate files.

de/defaults - Custom layers and preferences files for layout
can be put here. For more information, refer to
“Layers and Preferences Files” on page 6-17.

drc - Use this directory for files needed by the ADS
Design Rule Checker tool.
6-24 Advanced Topics

Chapter 7: Standardizing Existing ADS
Design Kits
Most design kits in use with ADS today were created before the standard design kit
structure was developed. This chapter describes the process of standardizing an
existing ADS design kit.

Design Kit Parts
To update an existing ADS design kit to conform to the new standard structure, first
study Chapter 2, Understanding the ADS Design Kit File Structure and Chapter 4,
Basic Parts of an ADS Design Kit to understand the new structure. Then determine
which of the directories in the new structure are best suited to hold the data from
your old design kit. Note which directories and files are required. Create the new
directory structure and copy your old files into the new directories.

If you did not use one before, this is a good time to start using a revision control or
history management system, which will tag each file with a version each time it is
updated. The overall set of files can also be tagged at a release, enabling you to trace
individual files back to their actual kit version.

From Chapter 2, Understanding the ADS Design Kit File Structure, you will learn
which are the required parts of a design kit. Chapter 4, Basic Parts of an ADS Design
Kit will give more details on each. Especially make sure that the template ads.lib file
is created. This is often missing from older design kits. For more information on the
ads.lib file, refer to “The ads.lib Template” on page 4-33.

Naming Convention
Make sure that all names used in your design kit follow the naming guidelines
outlined in Chapter 4, Basic Parts of an ADS Design Kit. Since ADS does not
currently have a true hierarchical level called a library, all components are stored in
the same name space when they are entered into the system. If components from
different libraries have the same name, the last one loaded will overwrite any that
were loaded before it. To ensure that your components do not collide with components
from the built-in libraries or from other design kits, prefix each component name with
a unique identifier such as the name of the design kit. This also applies to all global
variables, subcircuit names in external files, as well as external data files names.
Design Kit Parts 7-1

Standardizing Existing ADS Design Kits
Component Selection Method
Next, you should decide if the current method of selection of components is adequate.
For a discussion of the pros and cons of each component selection method, refer to
“Component Palette vs. Library Browser” on page 4-15. The components in your kit
can be made available from the component palette or the library browser or both. You
can even have some available one way and others available the other way.

Palette Bitmaps
One part of old design kits that usually varied from kit to kit was the name of bitmap
directories. The standard calls for bitmaps to be stored in the circuit/bitmaps
directory under the pc or unix subdirectories. The name of the bitmap can be the
same since they are stored in different directories. The section on “Custom AEL
Code” on page 7-2 lists another bitmap change that may be required.

You may also choose to update your bitmap graphics at this time if it does not include
any indication of the design kit it came from. The “DesignGuide Developer Studio”,
which is available with your ADS software, has a tool to help create bitmaps
specifically for ADS. For more information on bitmaps, refer to “Bitmaps” on
page 4-17 and “Creating a Component Palette and Bitmaps” on page 3-14.

Custom AEL Code
Some old design kits include modified versions of the old infrastructure software. Use
of this old code should be discontinued as it causes new design kits to be unusable.
Custom AEL code can still be provided, and there are some cases where it must be
provided, but you should update your AEL code to work with the new design kit
infrastructure code, the code in ADS that loads design kits.

Since custom menus are not provided with the design kit infrastructure at this time,
that is one area for which you must continue to provide custom code. It is advisable
that you make sure every function that you write in AEL has a unique name to avoid
collision with other AEL functions in the ADS system or in other design kits. All
function names in your design kit should begin with a unique identifier such as the
name of your design kit.

Some design kits developed previously used the AEL constant DKBITMAPSTRING
in calls to create_item() . This constant was set to bitmaps or pcbitmaps, depending on
the platform. Since the correct directories for bitmaps are now bitmaps/pc and
7-2 Component Selection Method

bitmaps/unix, the DKBITMAPSTRING constant should no longer be used. It will
remain in the backward compatibility code so old kits continue to work.

Design Kit Distribution
After you have modified your design kit to conform to the standard structure, and
have assigned names which include a unique identifier to all parts of the design kit,
review Chapter 5, Completing the Design Kit to understand the recommended
procedures for packaging, distribution and support of your design kit. Distributing
your design kit as a simple .zip file is recommended. This will ensure that it works
with the ADS Design Kit installation code. Complex installation scripts are not
recommended as they have caused problems in the past which can easily be avoided.

Kits that do not conform to the Standard
Finally, if you have found that some parts of your design kit just do not conform to the
standard structure, please contact the Agilent EEsof-EDA Design Kit project team.
The team can review your needs and recommend the best way to solve your problem.
The standard design kit structure may need to be extended to cover your needs.
Design Kit Distribution 7-3

Standardizing Existing ADS Design Kits
7-4 Kits that do not conform to the Standard

Chapter 8: Setting Up Design Kit Software
and Menus
This chapter describes the details of configuration files and variables which are used
to enable and disable the common design kit software. This includes software for
loading design kits, as well as the software to control the menus and dialog boxes that
are shipped with ADS for use with all design kits. This information is included for
advanced users or users of old design kits who experience problems between the new
software and an old design kit.

Configuration Files
Each individual Advanced Design System tool has its own unique configuration file.
These configuration files contain information required by the software to install and
enable the tools.

If you are an advanced design kit user, there are two configuration files that you
should be aware of:

• The de_sim.cfg file. This is the general ADS configuration file.

• The design_kit.cfg file. This is the specific design kit configuration file.

The configuration files in Advanced Design System are read from three locations:

• $HPEESOF_DIR/config This is the default location where configuration files
are located when shipped with the software.

• $HPEESOF_DIR/custom/config This location is reserved for customization,
typically by CAD managers.

• $HOME/hpeesof/config This location can be used for customization by the end
user. Configuration files in this location may also be written to by the software.

Note Any customization set up in $HPEESOF_DIR (software installation directory)
should be confined to the custom subdirectory. This is because anything outside of the
custom subdirectory may be overwritten by a subsequent update to the software.
Configuration Files 8-1

Setting Up Design Kit Software and Menus
The de_sim.cfg file is read from all three locations in the order listed above. If a
variable is defined in more than one location, the last value read is the one that will
be recognized by the system.

The design_kit.cfg file is included by adding the following line to the de_sim.cfg file:

+ design_kit

When + design_kit is encountered in a de_sim.cfg file, the design_kit.cfg file is only
read from one location, as opposed to the three locations described above. This single
location is the same directory that contains the de_sim.cfg file currently being read.

Current Configuration Variables
The information described in Table 8-1 is a list of configuration variables used by the
current design kit infrastructure software beginning with ADS2001. This is the
general code that installs and enables design kits, as well as the user interface code
such as menus and dialog boxes common to all design kits. This code should be
differentiated from any software or code that is specific to a particular design kit. Any
code referred to in this section is application extension language (AEL) code. For
more information on AEL code, refer to the Advanced Design System “AEL” manual.

If you are a general user of new ADS design kits, it is not important to understand
the information provided in this section. This information is provided for CAD
administrators, design kit developers or anyone who has worked with design kits in
ADS prior to ADS2001, when the design kit infrastructure code had to be manually
configured. These variables are now all set automatically in ADS.

Anyone who used design kits prior to ADS2001 should check their de_sim.cfg files in
all user configurable locations and remove (or preferably comment out with a # sign
in column one) any configuration variables used for general design kit configuration
in the past. Refer to “Accessing Old Design Kit Software” on page 8-5 for a review of
those variables. The last section, “Accessing Both Old and New Design Kit Menus
Simultaneously” on page 8-6, will help you reset the necessary variables if you have
an ongoing need for access to the old design kit software.

A description of each design kit variable required for current ADS design kit
infrastructure software is provided in Table 8-1.
8-2 Current Configuration Variables

Table 8-1. ADS Design Kit Variables

DK_AEL_PATH
This variable is set in the $HPEESOF_DIR/config/design_kit.cfg file. The DK_AEL_PATH variable is set
to the directory where the common design kit AEL code resides. This variable is used by the next few
variables in the file.

DK_AEL_PATH={$HPEESOF_DIR}/design_kit/ael

Note: The next three variables described in this table are referenced in
$HPEESOF_DIR/config/de.cfg when ADS boots up.

DESIGN_KIT_UI_AEL
This is the AEL code related to the Design Kit menu in the Main ADS window. It is read very early
during boot-up.

DESIGN_KIT_UI_AEL= {%DK_AEL_PATH}/dk_menu

DESIGN_KIT_STARTUP_AEL
This is a list of AEL files read later during boot-up. dk_startup contains code to load the specific design
kits which are currently configured. The other files contain code related to the common design kit
menus and dialog boxes.

DESIGN_KIT_STARTUP_AEL={%DK_AEL_PATH}/dk_startup:{%DK_AEL_PATH}/dk_explorer

DESIGN_KIT_PROJECT_AEL
This AEL file contains code that is invoked every time a user opens a project.

DESIGN_KIT_PROJECT_AEL={%DK_AEL_PATH}/dk_project_attach

DESIGN_KIT_BROWSER_PATH
This variable is used to extend the search path for the library browser. The common design kit software
automatically appends “<design_kit_path>/circuit/records” to this path whenever a design kit is loaded.
All the control files and the .idf files in these directories are read by the library browser to create the
Analog/RF related libraries/sub-libraries. The library browser is a separate executable program, which
is closed and restarted to pick up the new path. This variable is referenced by
HPANALOGRF_BROWSER_PATH in $HPEESOF_DIR/config/hpeesofbrowser.cfg.

DESIGN_KIT_BROWSER_PATH=
Current Configuration Variables 8-3

Setting Up Design Kit Software and Menus
DESIGN_KIT_TEMPLATE_BROWSER_PATH
This variable is used to extend the search path for the template browser. The common design kit
software automatically appends “<design_kit_name>|<design_kit_path>/circuit/templates” to this path
whenever a design kit is loaded. Each entry is in the form of <name>|<path> where <name> is the top
level node displayed in the browser and <path> is the path to the directory containing the templates.
The template browser is a separate executable program, which is closed and restarted to pick up the
new path. This variable is referenced by HP_TEMPLATE_BROWSER_PATH in
$HPEESOF_DIR/config/hpeesofbrowser.cfg.

DESIGN_KIT_TEMPLATE_BROWSER_PATH=

DESIGN_KIT_NO_MENU
Obsolete variable used by design kit code prior to ADS 2001. Design kit menus are now available
full-time for all users.

DESIGN_KIT_NO_MENU=TRUE

Table 8-1. ADS Design Kit Variables
8-4 Current Configuration Variables

Accessing Old Design Kit Software
Prior to ADS 2001, to enable a design kit and the design kit menus, the following
configuration variables had to be set manually in de_sim.cfg at the local
($HOME/hpeesof) or custom ($HPEESOF_DIR/custom/config) level.

To load the AEL code needed to load design kits and the menus:

DESIGN_KIT_DIRECTORY={$HPEESOF_DIR}/design_kit

USER_AEL={%DESIGN_KIT_DIRECTORY}/design_kit_startup

DESIGN_KIT_LOCAL_OVERRIDE
Obsolete variable used by design kit code prior to ADS 2001 to suppress reading of the design kit
configuration file ads.lib from system-wide location. This functionality is now provided in a more flexible
manner from the design kit software and the configuration variable DESIGN_KIT_LEVELS_ENABLED.

DESIGN_KIT_LOCAL_OVERRIDE=FALSE

DESIGN_KIT_LEVELS_ENABLED
This variable refers to the ads.lib files that will be read to load design kits. This is similar to the obsolete
variable DESIGN_KIT_LOCAL_OVERRIDE, but is less ambiguous and gives the user more flexibility
and control. There is a design kit menu pick that opens a dialog to control this variable.

To manually change it to suppress the reading of the ads.lib file at the specified level, remove the name
of the level from the list. Order of the list is not important and colons do not need to be retained.
PROJECT:SITE is a valid value instructing the system to read ads.lib from the current project and the
site locations only. Locations are as follows:

SITE: $HPEESOF_DIR/custom/design_kit/ads.lib

USER: $HOME/hpeesof/design_kit/ads.lib

STARTUP: The directory from which ADS is invoked on unix. This can be set as a short-cut property for
PC systems.

PROJECT: If the project level is enabled, the ads.lib file will be read if available any time a project is
opened, and design kits specified in that ads.lib file will be loaded. Note that leaving a project will not
unload any design kits as the ADS system does not currently have the capability to remove the system
components once they are loaded.

For more information on the ads.lib file, refer to “The ads.lib Template” on page 4-33.

DESIGN_KIT_LEVELS_ENABLED=SITE:USER:STARTUP:PROJECT

Table 8-1. ADS Design Kit Variables
Accessing Old Design Kit Software 8-5

Setting Up Design Kit Software and Menus
LOCAL_AEL={%DESIGN_KIT_DIRECTORY}/design_kit_project_attach

To suppress reading the ads.lib design kit file from the system level:

DESIGN_KIT_LOCAL_OVERRIDE=FALSE Set it to TRUE to only read local
ads.lib files.

To turn on the design kit menus in all ADS windows:

DESIGN_KIT_NO_MENU=FALSE By default this is set to TRUE so design kit
menus are not visible unless needed.

To enable design kit menus in schematic and layout windows:

USER_MENU_FUNCTION_LIST=app_add_design_kit_menus This is only
needed for the rare design kits which supply a custom schematic or layout menu.
It works with the DESIGN_KIT_NO_MENU variable, which ultimately controls
the menu visibility. Set DESIGN_KIT_NO_MENU=FALSE to see the menus in
schematic or layout windows.

With the release of ADS 2001, the first three of these were moved into the system
design_kit.cfg and automatically loaded. The next two were defaulted in the system
design_kit.cfg and only needed to be set in a local or custom de_sim.cfg if values other
than the default were desired. The last one was not defined in design_kit.cfg. It still
needs to be set manually if required.

Accessing Both Old and New Design Kit Menus
Simultaneously
In an Add-on release to ADS 2001, new design kit software is provided. The old
functionality was retained where needed to support existing design kits, but
completely new menus are provided and turned on automatically without user
intervention.

With the new configuration variables, the old design kit menu in the ADS Main
window is no longer readily accessible. All design kit related activities should be
performed through the new menus. The only reason to access the old menu is for
other utilities that were historically on the same menu. If access to the old menu is
required, the following steps should be taken:

1. Remove or comment out general design kit configuration variables (listed in
this chapter) from any user configurable location. These will interfere with the
new software. If a design kit configuration variable is not discussed in this
8-6 Accessing Both Old and New Design Kit Menus Simultaneously

chapter but is in your system configuration, perhaps it applies to a specific
design kit. These can remain as they are.

2. After removing old variables, restart ADS and verify that only the new design
kit menu is visible. After this has been verified, close ADS. [need a link to a
screen dump so user knows what new menu looks like]

To gain access to the old software without disabling the new software, perform
the following steps:

3. Copy $HPEESOF_DIR/config/design_kit_old.cfg.unix
or
$HPEESOF_DIR/config/design_kit_old.cfg.win32
to
$HOME/hpeesof/config/design_kit_old.cfg

4. Add the following line to $HOME/hpeesof/config/de_sim.cfg

+ design_kit_old.cfg

5. Follow the directions in the design_kit_old.cfg file or read the information below
and modify design_kit_old.cfg as needed.

Remember that the value of a variable in $HOME/hpeesof/config will take precedence
over one set in $HPEESOF_DIR/custom/config or $HPEESOF_DIR/config (see
“Configuration Files” on page 8-1). Choose Options > Configuration Explorer from the
the ADS Main window to check for conflicts. Other tools may have set these variables
to different values. Resetting them here may disable other tools. This can be fixed by
combining all needed values together, separated by a colon (:).

Example:

Note To enable better comparisons within the Configuration Explorer, set
CONFIG_EXPLORER_CMP_VARS in de_sim.cfg, but beware that this makes the
Explorer run very slow on networked systems. It works best on a stand-alone PC
installation.

To make the old design kit menu visible in the main ADS window, change this value
to FALSE and restart ADS. You may need to iconize and restore the window once if
the menu pick isn’t visible immediately.

USER_MENU_FUNCTION_LIST=app_add_user_menus:app_add_design_kit_menus
Accessing Both Old and New Design Kit Menus Simultaneously 8-7

Setting Up Design Kit Software and Menus
DESIGN_KIT_NO_MENU=TRUE

These reset the USER_AEL and LOCAL_AEL path to load the software. Definitely
check for conflicts with these AEL variables.

DESIGN_KIT_OLD_DIRECTORY={$HPEESOF_DIR}/design_kit

USER_AEL={%DESIGN_KIT_OLD_DIRECTORY}/design_kit_startup

LOCAL_AEL={%DESIGN_KIT_OLD_DIRECTORY}/design_kit_project_attach

Uncomment this variable to turn on the old design kit menu in schematic or layout
windows.

USER_MENU_FUNCTION_LIST=app_add_design_kit_menus

This is an obsolete variable that formerly controlled the scope of ads.lib files. For
information on using the new method of controlling the scope of the ads.lib files, refer
to DESIGN_KIT_LEVELS under “Current Configuration Variables” on page 8-2.

DESIGN_KIT_LOCAL_OVERRIDE=TRUE

Viewing Configuration Files and Variables
A useful tool for viewing configuration files and variables within Advanced Design
System is the ADS Configuration Explorer. To launch the Configuration Explorer:

From the ADS Main window, choose Options > Configuration Explorer .
The ADS Configuration Explorer dialog box appears.

For more information on the ADS Configuration Explorer, refer to “Viewing Details of
the Current Configuration” in Chapter 1 of the ADS “Customization and
Configuration” manual.

For more information on configuration files and configuration variables in ADS, refer
to Chapter 1 of the ADS “Customization and Configuration” manual and Chapter 3 of
the “AEL” manual.

Disabling the Design Kit Software
The new ADS design kit software is designed to be compatible with the old design kit
software as it was shipped from the factory. However, there are some extreme cases
where an old design kit created outside of the factory may not operate with the new
software loaded. This is apparently due to the fact that the old factory software was
8-8 Viewing Configuration Files and Variables

modified for a customer or by a customer, without making the names of the AEL
functions unique. Since all AEL functions are global in scope, any custom AEL code
has the potential to overwrite an existing AEL function, if the custom code does not
have a unique prefix on all functions and global variables.

Any design kits with the problem described above will also not be able to co-exist with
other design kits which follow the design kit standard structure and use the standard
method to enable the design kit. These design kits should be upgraded to follow the
standard structure and use the standard software. Until they are upgraded, the
following steps can be taken to disable the new design kit software. This can be done
at the user or system level.

1. Copy $HPEESOF_DIR/config/design_kit.cfg to
$HPEESOF_DIR/custom/config or $HOME/hpeesof/config.

2. Edit design_kit.cfg file as follows to undefine the variables that load the design
kit AEL files.

DESIGN_KIT_UI_AEL=

DESIGN_KIT_STARTUP_AEL=

DESIGN_KIT_PROJECT_AEL=

3. Add +design_kit anywhere in the de_sim.cfg file which resides in the same
directory where you edited design_kit.cfg. If the de_sim.cfg file doesn’t exist,
create a new file.
Disabling the Design Kit Software 8-9

Setting Up Design Kit Software and Menus
8-10 Disabling the Design Kit Software

Appendix A: ADS Design Kit Development
for RFIC Dynamic Link
This appendix describes general information related to design kits created for use in
the RFIC Dynamic Link Flow between Advanced Design System and Cadence DFII.

RFIC Dynamic Link
The RFIC Dynamic Link is an EDA framework integration product based on
Inter-Process Communication (IPC), rather than data file translation, maximizing
data integrity and ease of use. The Dynamic Link enables you to create a design in
the Cadence EDA framework and then simulate your design in Advanced Design
System. This provides you with the powerful capabilities of both EDA design
environments.

The RFIC Dynamic Link documentation set provides fundamental information on the
installation, usage and customization of your EDA environment. Ensure that the
Dynamic Link is properly configured before attempting to use the product.

Design Kits for RFIC Dynamic Link
ADS foundry models have been developed to provide access to a specific process
within Advanced Design System when using RFIC Dynamic Link. To give the
simulator access to these models, the RFIC Dynamic Link documentation
recommends that you place a generic include component called NetlistInclude. For
more information on the NetlistInclude component, refer to “Netlist Include or
Process Component” on page 4-22. On the include component, you must enter the
name and path of model files to be referenced, as well as specifying any corner case
identifiers.

When developing a design kit for use in the RFIC Dynamic Link flow, it is
recommended that you create a custom process component instead of requiring the
end user to configure the NetlistInclude component. A custom component can contain
the names of the model files so the end user does not need to know this information.
It can also present the end user a simple list to select the appropriate corner case
based on meaningful criteria. This process component, coupled with reusable models
or data files, can then be used as the basis for a design kit for use in the ADS
Front-End Design Flow.
A-1

ADS Design Kit Development for RFIC Dynamic Link
For an example of this type of process component, refer to “Example Process
Component with Forms and Formsets” on page 4-25.
A-2

Appendix B: ADS Design Kit Development
for IFF
This appendix describes general information related to creating design kits for design
flows involving Advanced Design System and the Intermediate File Format (IFF).

Intermediate File Format
Intermediate File Format (IFF) is an ASCII file format that is both platform and
application independent. The file has a simple, line-oriented command structure with
a fairly rich set of constructs, thus simplifying design transfer. The IFF translators
offered by Agilent Technologies provide a means for transferring IFF files between
Advanced Design System and third-party electronic design automation (EDA) tools
such as Cadence Design Framework II or Boardstation from Mentor Graphics
Corporation.

Foundry kits developed for use in design flows involving ADS and another EDA tool,
where designs are transferred via IFF, should follow the standard structure (as
described in this document) for files used on the ADS side of the link.

For more information on using the Intermediate File Format in ADS, refer to the
“Understanding Component Library Requirements” in chapter 2 of the “IFF
Schematic Translation for Cadence” documentation.

For more information on creating design kits for use in this combined environment,
contact Agilent EEsof-EDA Solution Services.
B-1

ADS Design Kit Development for IFF
B-2

Index

A
about.txt, 2-14, 3-2, 3-13, 4-36
ADS, 1-1

Configuration Explorer, 8-7, 8-8
Customization and Configuration, 6-20
Design Kit Verification Tool, 2-3, 2-15
Design Rule Checker, 2-14, 6-24
DesignGuide Developer Studio, 3-14, 4-14,

4-17, 6-17, 7-2
Electronic Notebook, 6-17
Front End Design Flow, 1-1, 1-2, 6-16, 6-23
installation directory, 3-1, 3-29, 4-15, 4-21,

4-35, 8-1
legal character set, 4-4
Netlist Exporter, 1-2
netlist format, 2-10
Netlist Translator, 2-10, 3-18, 3-31
project directory, 2-14, 4-13, 4-15, 4-35, 6-18
reserved words, 4-4
simulator, 3-18
startup time, 3-29, 4-2, 4-15, 4-21, 4-33
Symbol Editor, 4-13
Window Menu Control, 6-22

ads.lib, 2-13, 3-2, 3-4, 4-1, 4-20, 4-33, 4-34, 4-35,
5-1, 7-1, 8-5, 8-8

AEL, 1-1, 2-13, 2-14, 2-15, 3-1, 3-2, 3-5, 3-7, 3-9,
3-14, 3-30, 4-1, 4-2, 4-12, 4-15, 4-16, 4-18,
4-21, 4-22, 4-33, 6-5, 6-7, 6-12, 6-18, 6-20,
8-2, 8-9

compiled versions, 6-20
custom, 1-3, 4-35, 6-19, 6-24, 7-2

artwork macro files, 6-24
B
back annotation, 4-30, 6-13
back slash, 3-1
bitmaps, 2-2, 3-2, 3-14, 3-20, 4-2, 4-17, 7-2

bitmap editor, 3-14
BMP format, 2-10

boot.ael, 2-2, 2-13, 3-2, 3-5, 3-11, 3-30, 4-18,
4-33, 4-35, 6-19

C
callbacks, 2-9, 3-9, 4-11, 4-21

netlist, 3-21, 3-30
parameter, 3-30, 6-3, 6-12

communication log, 3-31

component, 2-1, 2-2, 2-11, 3-3, 4-2, 4-11, 4-32
definition, 3-9
demand-loaded, 2-11, 3-29, 4-16
history, 3-13, 4-3
identification, 4-15
MDIF, 6-1
name, 2-8, 4-2, 4-4
NetlistInclude, 3-18, 3-19, 4-23, A-1
palette, 2-2, 2-4, 3-14, 3-15, 3-26, 4-1, 4-2,

4-12, 4-15, 4-16, 7-2
prefix, 4-3, 7-1
selection, 7-2
simulation, 3-23
SnP, 6-1
symbols, 3-7
testing, 3-12
unique names, 4-35
verification, 3-2
visibility, 3-3, 3-26

CONFIG_EXPLORER_CMP_VARS, 8-7
configuration

files, 8-1
variables, 2-12, 8-2, 8-6

control files, 3-27, 4-15, 8-3
corner case, 3-19, 4-22, 4-24, 4-30, 4-32
custom

design kit software, 2-14
menus, 1-3
shell, 2-15

custom models, 6-2
D
data, 1-3

DATA_FILES, 6-1
DataAccessComponent, 6-1
dataset, 2-10
display, 2-12, 2-14, 6-19
files, 7-1
processing, 6-18

de.cfg, 6-21
de_sim.cfg, 6-21, 8-1, 8-6, 8-7, 8-9
debug

debug_msg, 6-13
messages, 6-13
tips, 3-6

default layer and preferences files, 6-17
Index-1

demand-loaded, 3-3, 5-2
dependentParmData, 6-6
design flow

Front End Design Flow, 1-1, 1-2, 1-5, 6-16,
6-23

RFIC Dynamic Link Flow, 1-1, 1-3
design kits, 1-2, 4-33

accessing, 3-2, 3-14
basic parts, 3-1, 4-1
capability, 1-6
components, 2-2, 4-2
conflicting definitions, 6-17
customization, 2-12
disabling, 8-8
distribution, 2-1, 6-18, 6-19, 7-3
documentation, 2-14
file structure, 2-1, 2-7, 2-8
integrity, 5-1
legacy design kits, 1-1
loading, 3-4
multiple, 2-1
name, 2-4, 4-1, 7-1
non-conforming, 7-3
old menu, 8-6
old software, 2-12
packaging and distribution, 5-2, 7-3
palette, 4-2
revision history, 4-36
software, 8-1
standardization, 7-1
structure, 1-2
subdirectories, 2-1
support, 7-3
testing, 3-4, 3-18
user interface, 8-2
using, 3-23
verification, 5-1
version, 4-33, 7-1

design_kit.cfg, 8-1, 8-6, 8-9
DESIGN_KIT_BROWSER_PATH, 2-11, 8-3
DESIGN_KIT_DIRECTORY, 8-5
DESIGN_KIT_LEVELS, 8-8
DESIGN_KIT_LEVELS_ENABLED, 8-5
DESIGN_KIT_LOCAL_OVERRIDE, 8-5, 8-6,

8-8
DESIGN_KIT_NO_MENU, 8-4, 8-6, 8-8
DESIGN_KIT_OLD_DIRECTORY, 8-8
DESIGN_KIT_PROJECT_AEL, 8-3, 8-9

DESIGN_KIT_STARTUP_AEL, 8-3, 8-9
DESIGN_KIT_TEMPLATE_BROWSER_

PATH, 2-12, 6-19, 8-4
DESIGN_KIT_UI_AEL, 6-20, 8-3, 8-9
DesignGuides, 1-3, 3-14, 4-14
designKitRecord, 3-6
device operating point, 6-13
deviceidx.db, 6-2
directories

$ARCH, 2-3, 2-9, 6-2
$HOME, 3-3, 3-4, 4-35
$HPEESOF_DIR, 3-29, 4-15, 4-21, 4-35, 8-1
ael, 2-2, 2-9, 2-13, 3-3, 4-36, 6-20
artwork, 2-9
bin, 2-3, 2-9, 3-30, 4-21
bitmaps, 2-10
circuit, 2-9, 2-12
config, 2-10, 2-12
custom, 8-1
data, 2-10, 6-1, 6-2
de, 2-13, 4-35
defaults, 6-17
design_kit, 2-13, 3-3
designs, 2-10
doc, 2-14, 3-3
drc, 2-14
expressions, 2-14
hptolemy, 2-14
models, 2-10, 3-3
netlist_exp, 2-15, 6-16
networks, 6-2
optional, 2-1, 3-4
pc, 3-3, 3-16
project, 4-34
records, 2-2, 2-4, 2-11, 3-3, 4-18, 4-21, 4-36
required, 2-2
scripts, 2-15
startup, 4-34
structure, 1-5, 2-4, 2-5
substrates, 2-11
symbols, 2-11, 3-3, 3-20, 4-13, 4-15
template, 6-19
templates, 2-12
unix, 3-3, 3-16
utilities, 2-13, 2-15, 6-20
verification, 2-15

distribution, 2-1
external, 1-3
Index-2

DK_AEL_PATH, 8-3
DKBITMAPSTRING, 7-2
DLL, 6-2
documentation, 6-16
E
EDA, B-1
EESOF_MODEL_PATH, 6-2
errors

failed to locate component definition, 4-3
executables

bmptoxpm.exe, 4-17
hpeesofsim.exe, 6-23

expressions, 2-14, 6-13, 6-18
Extensible Markup Language, 4-19
extensions

custom, 1-2
external files, 7-1
F
files

.ael, 2-2, 2-11, 3-8, 4-16, 4-36, 5-2

.atf, 2-2, 4-16, 4-36, 5-2, 6-20

.bmp, 2-10, 3-2, 4-18

.ctl, 2-11, 4-18, 4-36

.dll, 2-9, 6-2

.ds, 2-10

.dsn, 2-3, 2-10, 3-2, 3-8

.idf, 2-11, 3-3, 3-29, 4-16, 4-21, 4-36, 5-2

.lay, 2-13, 6-17

.mdf, 2-10

.net, 2-10, 3-2, 3-33, 3-45

.prf, 2-13, 6-17

.rec, 2-11, 3-35, 3-46, 4-20, 4-36

.sl, 2-9, 6-2

.slm, 2-11

.so, 2-9, 6-2

.zip, 2-1, 7-3
about.txt, 2-14, 3-2, 3-13, 4-36
ads.lib, 2-13, 3-2, 3-4, 4-1, 4-20, 4-33, 4-34,

4-35, 5-1, 7-1, 8-5, 8-8
ADSlibconfig, 2-10
archive, 2-1
bitmap, 1-2, 4-17
boot file, 2-2
boot.ael, 2-13, 3-2, 3-5, 3-11, 3-30, 4-18, 4-33,

4-35, 6-19
citi, 2-3
component

data files, 2-10

definition, 1-2
design files, 2-10
model files, 2-10
records files, 2-11
substrate files, 2-11
symbol files, 2-11
template files, 2-12

configuration files, 2-10
control and record files, 3-26, 4-15, 4-16,

4-18, 4-19, 4-20, 4-21, 4-36
daemon.log, 3-31
de.cfg, 6-17
de_sim.cfg, 2-12
design_kit.cfg, 4-35
hpeesofsim.cfg, 6-2
macro, 2-9
mdif, 2-3
model files, 1-1, 1-2, 4-21
mykit_item.ael, 3-2
optional, 1-2
palette.ael, 2-13, 3-2, 3-16, 3-17, 3-20, 3-30,

3-35, 3-46, 4-16, 4-18, 4-36
records, 1-2
Root model, 6-2
S2P, 2-3, 6-1
schematic symbol, 1-2
SPICE, 2-3
translated model files, 2-3

form definitions, 2-9
forms and formsets, 4-11
forward slashes, 3-1, 3-30
foundry kits, 2-3
Front End Design Flow, 1-1, 1-2, 6-16, 6-23
functions, 4-35

ael, 4-21
api_add_menu(), 6-21
app_add_user_menus(), 6-20
callback, 6-5
create_item(), 2-9, 3-9, 3-21, 3-30, 4-11, 4-13,

4-21, 7-2
create_parm(), 6-3
de_define_palette_group(), 3-16, 3-17
dm_create_cb(), 6-4, 6-6
library_group(), 3-26, 3-27, 3-28, 3-30, 4-18
list(), 6-4
pcb_get_string(), 6-10
pcb_set_string(), 6-10
Index-3

system(), 3-1
G
global name space, 4-32
global variables, 2-9, 3-6, 3-7, 4-11, 4-32, 4-35,

7-1
H
hierarchical subcircuits, 2-10
HP_FET, 6-2
HP_FET_Model, 6-2
HP_TEMPLATE_BROWSER_PATH, 2-12,

6-19, 8-4
HPANALOGRF_BROWSER_PATH, 2-11, 8-3
hpedlibgen, 3-29, 4-21
hpeesofarch, 2-3, 2-9, 6-2
hpeesofbrowser.cfg, 2-11, 2-12, 6-19, 8-3, 8-4
hpeesofsim, 6-2
HSpice, 2-10, 3-18
HTML, 2-14, 6-17
I
IC-CAP, 3-31, 6-2
IFF, 1-5, 4-12, B-1
included files

back annotation, 4-30
optimization, 4-30
sweeping, 4-30
tuning, 4-30
yield, 4-30

index file, 6-17
inter-process communication, 1-3
item definition file, 2-11, 3-3, 3-21, 3-29, 4-2,

4-16, 4-21, 4-36
L
layers and preferences files, 2-13, 6-17, 6-24
LAYERS_PATH, 6-18
layout, 2-9, 4-2, 4-20, 6-16, 6-17, 6-23

layout.lay, 6-17
layout.prf, 6-17
menus, 1-3

libraries, 2-11, 4-3, 4-34, 7-1
component, 1-1
creating libraries, 1-3
dynamically linked, 2-9, 6-2, 6-23
library structure, 1-1
shared, 2-9, 6-2

library browser, 1-2, 2-2, 2-5, 2-11, 3-3, 3-14,
3-26, 3-27, 3-28, 3-30, 4-2, 4-12, 4-15, 4-16,
4-18, 4-20, 4-35, 7-2, 8-3

loading, 4-33

LOCAL_AEL, 8-6, 8-8
lookup table

#uselib, 2-10
LVS, 2-15, 6-16
M
MDIF, 2-10, 6-2
MeasEqn, 6-19
menus

custom, 1-3, 6-20, 6-24
layout, 1-3

model cards, 1-3, 2-2, 2-4, 2-10, 3-18, 3-31, 4-30
model files, 1-1, 2-10, 3-2, 3-19, 3-21, 4-21, 4-32

adding, 3-22
models

custom, 6-2
included models, 2-3
model data, 2-4, 2-10
model names, 4-32
user-compiled, 2-3, 6-2

Momentum
substrate files, 2-11, 6-24

multi-chip
design, 6-17
module, 4-32

multi-layered functionality, 4-34
N
nested defines, 4-30
netlist, 1-3, 2-4, 3-2, 3-31, 4-3, 4-30

callback, 3-21, 3-30, 4-22, 4-30
fragments, 2-2, 2-3
include component, 3-2, 3-18
translator, 4-32

Netlist Exporter, 1-2, 2-15, 6-16
NetlistInclude component, 3-18, 3-19, 4-23,

A-1
networked

environments, 4-34
systems, 3-1, 4-34, 8-7

newline character, 3-1
NFS mounting, 4-30
O
optimization, 4-30, 6-13
P
palette, 4-35

component, 4-2
schematic window, 4-2
title, 4-1
Index-4

palette.ael, 2-13, 3-2, 3-16, 3-17, 3-20, 3-30,
3-35, 3-46, 4-16, 4-18, 4-36

parameter callbacks, 1-3, 3-9, 3-30, 6-3, 6-12
limitations, 6-13
structure, 6-5

parameters, 4-32
AllParams, 6-13
optimized, 6-12

PARM_MODIFIED_CB, 6-4
PARM_NOT_EDITED, 4-10, 6-13
PARM_NOT_ON_SCREEN_EDITABLE,

4-10
path, 2-12, 3-4, 3-30, 4-1, 4-21, 4-33, 4-36, 6-1,

6-18, 6-19, 8-3
PC shortcut, 4-34
pcbitmaps, 7-2
perl scripts, 2-15
pins, 4-4, 4-12
PREFERENCES_DIR, 6-17, 6-18
PREFERENCES_PATH, 6-17, 6-18
process variables, 2-10
PROJECT LEVEL, 4-34, 8-5
R
RECORD_FILES, 4-19
records file, 3-28
revision control, 5-1, 7-1
RFIC, 1-1, 2-4, 3-1, 4-3, 4-21, 4-32, 6-1

Dynamic Link, A-1
root permissions, 4-34
S
schematic, 2-14, 3-2, 3-13, 4-2, 4-11, 6-17, 6-19

schematic.lay, 6-17
schematic.prf, 6-17
window, 3-14

scripts, 4-34, 6-19
installation, 7-3

SDD, 3-1
shell

custom, 2-15
simulation, 2-12, 3-23, 6-1, 6-18, 6-23

data, 2-3, 2-5, 2-10
parallel simulation, 4-30
remote simulation, 4-30
results, 3-25
templates, 1-3

simulator, 3-18, 4-2, 4-3, 5-1
calculations, 2-2
custom simulator executable, 2-3

SITE LEVEL, 4-34, 8-5
S-parameter, 6-2
Spectre, 2-10
SPICE model files, 2-3
STARTUP LEVEL, 4-34, 8-5
statements

#define, 4-22
#ifdef and #endif, 4-22
#include, 4-22

structure
comprehensive, 2-6

subcircuits, 1-3, 2-3, 4-32, 6-6
models, 2-2, 2-4, 2-10, 3-1, 3-3, 3-31, 4-30
names, 4-32, 7-1

sweeping, 4-30, 6-13
symbols, 4-2, 4-4

built-in, 3-19
copying, 4-15
editor, 4-13
schematic, 3-2, 3-7, 4-12
SYM_, 3-20

SYSTEM_CUSTOM_CIRCUIT_SYMBOLS,
2-11

T
templates

data display, 6-19
simulation, 6-19
template browser, 8-4

translated models, 2-3, 4-1, 5-1
tuning, 4-30, 6-13
U
unit scale factors, 6-13
user access, 4-34
user compiled models, 6-2
USER LEVEL, 4-34, 8-5
USER_AEL, 8-5, 8-8
USER_MENU_FUNCTION_LIST, 6-20, 8-6,

8-7, 8-8
user-compiled models, 2-3, 6-13, 6-23
user-defined

lists, 4-11
simulation methods, 1-3

usermenu.ael, 6-20
V
VAR, 6-13
variables, 4-30, 4-32, 6-2, 6-13, 8-1

AEL, 3-7
global, 3-6, 3-7
Index-5

obsolete, 8-8
verification process, 2-3
version number, 4-33, 4-36, 5-1
X
XML, 2-11, 4-19
XPM format, 2-10
Y
yield, 4-30
Index-6

	Contents
	Chapter 1: Introduction
	ADS Design Kits
	ADS Design Flows
	Design Kits versus Libraries
	Intended Audience
	What is in this Manual
	Addressing a Needed Capability

	Chapter 2: Understanding the ADS Design Kit File Structure
	Overview of the File Structure
	Understanding the Directory Contents

	Chapter 3: ADS Design Kit Tutorial
	Tutorial Overview
	Building the Basic Design Kit Parts
	Creating the ads.lib File
	Creating the boot.ael File
	Viewing Debug Output
	Creating Component Symbols
	Creating Component Definitions
	Testing Your Component
	Providing Basic Documentation
	Making Components Accessible
	Creating a Component Palette and Bitmaps
	Adding a Netlist Include Component
	Creating an Example Design Using your Design Kit
	Adding Components to the Library Browser
	Adding Demand Loaded Components
	Using a Subcircuit Model
	Adding a Resistor with SDD Subcircuit Model

	Accessing the Supplied Sample Kit

	Chapter 4: Basic Parts of an ADS Design Kit
	Design Kit Name
	Components in a Design Kit
	Component Name
	Item Definition
	Schematic Symbol
	Component Palette vs. Library Browser
	Component Palette
	Bitmaps
	Library Browser
	Demand Loaded Components

	Model Files
	Netlist Include or Process Component
	Example Process Component with Forms and Formsets
	The #include Pre-processor Command
	The #ifdef and #define Pre-processor Commands
	Model Naming Limitations

	The ads.lib Template
	AEL Code for Loading a Design Kit
	The about.txt File
	The Example Project

	Chapter 5: Completing the Design Kit
	Verifying a Design Kit
	Assigning a Version
	Packaging for Distribution
	Supporting a Design Kit

	Chapter 6: Additional Parts for ADS Design Kits
	Adding Simulation Data to a Design Kit
	S-Parameter and MDIF data
	Root Model Files

	User Compiled Models
	Parameter Callbacks
	Adding a Callback to a Parameter Definition
	Writing the Parameter Callback Function
	Optimization Considerations
	Developing and Testing Modified Parameter Callback Functions
	Limitations of Parameter Callbacks

	Netlist Callbacks
	Layout vs. Schematic Comparison
	Creating Design Kit Documentation
	Layers and Preferences Files
	Advanced Topics
	Expressions
	Templates
	Adding Custom AEL
	Adding Custom Menus to ADS
	Adding Custom Models to the ADS Simulator
	ADS Layout Files

	Chapter 7: Standardizing Existing ADS Design Kits
	Design Kit Parts
	Naming Convention
	Component Selection Method
	Palette Bitmaps
	Custom AEL Code
	Design Kit Distribution
	Kits that do not conform to the Standard

	Chapter 8: Setting Up Design Kit Software and Menus
	Configuration Files
	Current Configuration Variables
	Accessing Old Design Kit Software
	Accessing Both Old and New Design Kit Menus Simultaneously
	Viewing Configuration Files and Variables
	Disabling the Design Kit Software

	Appendix A: ADS Design Kit Development for RFIC Dynamic Link
	RFIC Dynamic Link
	Design Kits for RFIC Dynamic Link

	Appendix B: ADS Design Kit Development for IFF
	Intermediate File Format

	Index

